首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quinotrierixin was isolated from microbes as an inhibitor of ER stress-induced XBP1 mRNA splicing, but its mode of action was unclear. We found that quinotrierixin is an inhibitor of protein synthesis, and that the required dose range of quinotrierixin to inhibit ER stress-induced XBP1 mRNA splicing was similar to that to inhibit protein synthesis. Furthermore, we also found that quinotrierixin inhibited the ER stress-induced increases of unfolded protein response-related genes such as GRP78, CHOP, EDEM, ERdj4, and p58IPK. Thus, we showed that quinotrierixin inhibited the ER stress-induced unfolded protein response, possibly due to its inhibitory activity of protein synthesis.  相似文献   

2.
Cells activate the unfolded protein response (UPR) to cope with endoplasmic reticulum (ER) stress. In the present study, we investigated the possible involvement of psychological stress on UPR induction in the mouse brain. When mice were exposed to immobilization stress for 8?h, XBP1 mRNA splicing was significantly induced in the hippocampus, cortex, hypothalamus, cerebellum, and brain stem. On the other hand, we did not observe any increase in XBP1 splicing in the liver, suggesting that this effect is specific to the brain. Stress-induced XBP1 splicing was attenuated 2 days after immobilization stress. We did not observe increases in any other UPR genes, such as CHOP or GRP78, in mouse brains after immobilization stress. These findings indicate an important specific role of XBP1 in response to psychological stress in the mouse brain.  相似文献   

3.
SENP1与前列腺癌   总被引:1,自引:0,他引:1  
SUMO (small ubiquitin-related modifier)是一种小泛素相关修饰物,能共价结合许多调控基因转录的重要蛋白,包括转录因子、转录辅助因子等.SUMO化修饰对蛋白-蛋白之间的相互作用、亚细胞定位、基因转录的活性以及靶蛋白的稳定性等具有重要的调节作用. SUMO化修饰是一个动态可逆的过程,将SUMO从靶蛋白上去除,称为去SUMO化(desumoylation),去SUMO化是SUMO特异蛋白酶(SUMO-specific proteases,SENPs)的主要功能.由于SUMO化是近几年才发现的一种新的蛋白质翻译后修饰系统,对其生物学功能还不十分清楚.前列腺癌是男性最常见的恶性肿瘤,最近的研究发现,SENP1在前列腺癌细胞中高表达,而且雄激素能诱导SENP1的表达,表明SENP1与前列腺癌的发生、发展密切相关.在本篇综述中,我们将就SENP1作一介绍.  相似文献   

4.
Mitochondria are unavoidably subject to organellar stress resulting from exposure to a range of reactive molecular species. Consequently, cells operate a poorly understood quality control programme of mitophagy to facilitate elimination of dysfunctional mitochondria. Here, we used a model stressor, deferiprone (DFP), to investigate the molecular basis for stress‐induced mitophagy. We show that mitochondrial fission 1 protein (Fis1) is required for DFP‐induced mitophagy and that Fis1 is SUMOylated at K149, an amino acid residue critical for Fis1 mitochondrial localization. We find that DFP treatment leads to the stabilization of the SUMO protease SENP3, which is mediated by downregulation of the E3 ubiquitin (Ub) ligase CHIP. SENP3 is responsible for Fis1 deSUMOylation and depletion of SENP3 abolishes DFP‐induced mitophagy. Furthermore, preventing Fis1 SUMOylation by conservative K149R mutation enhances Fis1 mitochondrial localization. Critically, expressing a Fis1 K149R mutant restores DFP‐induced mitophagy in SENP3‐depleted cells. Thus, we propose a model in which SENP3‐mediated deSUMOylation facilitates Fis1 mitochondrial localization to underpin stress‐induced mitophagy.  相似文献   

5.
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes endoplasmic reticulum stress (ERS), which is characteristic of cells with high levels of secretory activity and is involved in a variety of diseases. In response to ERS, cells initiate an adaptive process named the unfolding protein response (UPR) to maintain intracellular homeostasis and survival. However, long term and unresolved ERS can also induce apoptosis. As the most conserved signaling branch of UPR, the IRE1-XBP1 pathway plays an important role in both physiological and pathological states, and its activity has a profound impact on disease progression and prognosis. Here, the latest research progress of IRE1-XBP1 pathway in cancer, metabolic diseases, and other diseases was briefly introduced, and the relationship between several diseases and this pathway was analyzed. Besides, the new understanding and prospect of IRE1-XBP1 pathway regulating male reproduction were reviewed.  相似文献   

6.
ER stress signaling by regulated splicing: IRE1/HAC1/XBP1   总被引:12,自引:0,他引:12  
  相似文献   

7.
Global increases in small ubiquitin‐like modifier (SUMO)‐2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO‐2/3‐specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3‐mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1‐mediated cytochrome c release and caspase‐mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation‐induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.  相似文献   

8.
During their maturation step, transfer RNAs (tRNAs) undergo excision of their introns by specific splicing. Although tRNA splicing is a molecular event observed in all domains of life, the machinery of the ligation reaction has diverged during evolution. Yeast tRNA ligase 1 (TRL1) is a multifunctional protein that alone catalyzes RNA ligation in tRNA splicing, whereas three molecules [RNA ligase (RNL), Clp1, and PNK/CPDase] are necessary for RNA ligation in tRNA splicing in amphioxi. RNA ligation not only occurs in tRNA splicing, but also in yeast HAC1 mRNA splicing and in animal X-box binding protein 1 (XBP1) mRNA splicing under conditions of endoplasmic reticulum (ER) stress. Yeast TRL1 is known to function as an RNA ligase for HAC1 mRNA splicing, whereas the RNA ligase for XBP1 mRNA splicing is unknown in animals. We examined whether yeast and amphioxus RNA ligases for tRNA splicing function in RNA ligation in mammalian XBP1 splicing. Both RNA ligases functioned in RNA ligation in mammalian XBP1 splicing in vitro. Interestingly, Clp1, and PNK/CPDase were not necessary for exon–exon ligation in XBP1 mRNA by amphioxus RNL. These results suggest that RNA ligase for tRNA splicing might therefore commonly function as an RNA ligase for XBP1 mRNA splicing.  相似文献   

9.
10.
11.
SUMO conjugation is known to occur in response to double‐stranded DNA breaks in mammalian cells, but whether SUMO deconjugation has a role remains unclear. Here, we show that the SUMO/Sentrin/Smt3‐specific peptidase, SENP7, interacts with the chromatin repressive KRAB‐associated protein 1 (KAP1) through heterochromatin protein 1 alpha (HP1α). SENP7 promotes the removal of SUMO2/3 from KAP1 and regulates the interaction of the chromatin remodeler CHD3 with chromatin. Consequently, in the presence of CHD3, SENP7 is required for chromatin relaxation in response to DNA damage, for homologous recombination repair and for cellular resistance to DNA‐damaging agents. Thus, deSUMOylation by SENP7 is required to promote a permissive chromatin environment for DNA repair.  相似文献   

12.
Background: Chronic diabetes accelerates vascular dysfunction often resulting in cardiomyopathy but underlying mechanisms remain unclear. Recent studies have shown that the deregulated unfolded protein response (UPR) dependent on highly conserved IRE1α-spliced X-box- binding protein (XBP1s) and the resulting endoplasmic reticulum stress (ER-Stress) plays a crucial role in the occurrence and development of diabetic cardiomyopathy (DCM). In the present study, we determined whether targeting MAPK/ERK pathway using MEK inhibitor U0126 could ameliorate DCM by regulating IRE1α-XBP1s pathway.Method: Three groups of 8-week-old C57/BL6J mice were studied: one group received saline injection as control (n=8) and two groups were made diabetic by streptozotocin (STZ) (n=10 each). 18 weeks after STZ injection and stable hyperglycemia, one group had saline treatment while the second group was treated with U0126 (1mg/kg/day), 8 weeks later, all groups were sacrificed. Cardiac function/histopathological changes were determined by echocardiogram examination, Millar catheter system, hematoxylin-eosin staining and western blot analysis. H9C2 cardiomyocytes were employed for in vitro studies.Results: Echocardiographic, hemodynamic and histological data showed overt myocardial hypertrophy and worsened cardiac function in diabetic mice. Chronic diabetic milieu enhanced SUMOylation and impaired nuclear translocation of XBP1s. Intriguingly, U0126 treatment significantly ameliorated progression of DCM, and this protective effect was achieved through enriching XBP1s'' nuclear accumulation. Mechanistically, U0126 inhibited XBP1s'' phosphorylation on S348 and SUMOylation on K276 promoting XBP1s'' nuclear translocation. Collectively, these results identify that MEK inhibition restores XBP1s-dependent UPR and protects against diabetes-induced cardiac remodeling.Conclusion: The current study identifies previously unknown function of MEK/ERK pathway in regulation of ER-stress in DCM. U0126 could be a therapeutic target for the treatment of DCM.  相似文献   

13.
14.
15.
目的:在研究内质网应激介导的细胞凋亡过程中,我们发现Ring finger protein13(RNF13)具有促进细胞凋亡的功能。我们拟研究沉默RNF13后细胞对Tunicamycin等引起的细胞凋亡的影响,以及RNF13对活性形式的caspase3,XBP1(X-box binding protein 1)的剪切以及IRE1(Endoplasmic reticulum to nucleus signaling 1)磷酸化的影响以有助于了解RNF13促进细胞凋亡的信号通路的研究。方法:基因沉默RNF13,利用MTT方法研究RNF13沉默后对细胞增殖的影响,RNF13基因沉默后对XBP1剪切的影响,免疫印迹观察RNF13对IRE1磷酸化的影响。结果:RNF13基因沉默效率在80%以上。RNF13基因沉默后明显抑制细胞凋亡;敲低RNF13的细胞可抵抗衣霉素以及毒胡萝卜素的诱导的细胞凋亡。Caspase-3是细胞凋亡的关键蛋白。敲低RNF13后caspase-3的活性形式明显降低(降低70%,P0.001)。在加入衣霉素引起内质网应激的情况下,敲除RNF13的细胞XBP1的切割活性明显降低。敲除RNF13的细胞中IREl的磷酸化明显降低(降低90%,P0.001)。结论:RNF13通过IRE1-XBP1信号通路调节细胞凋亡。  相似文献   

16.
Endoplasmic reticulum (ER) stress is increasingly recognized as an important mechanism in a wide range of diseases including cystic fibrosis, alpha-1 antitrypsin deficiency, Parkinson's and Alzheimer's disease. Therefore, there is an increased need for reliable and quantitative markers for detection of ER stress in human tissues and cells. Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum can cause ER stress, which leads to the activation of the unfolded protein response (UPR). UPR signaling involves splicing of X-box binding protein-1 (XBP1) mRNA, which is frequently used as a marker for ER stress. In most studies, the splicing of the XBP1 mRNA is visualized by gel electrophoresis which is laborious and difficult to quantify. In the present study, we have developed and validated a quantitative real-time RT-PCR method to detect the spliced form of XBP1 mRNA.  相似文献   

17.
18.
The SENP proteases regulate the SUMO conjugates in the cell by cleaving SUMO from target proteins. SENP6 and SENP7 are the most divergent members of the SENP/ULP protease family in humans by the presence of insertions in their catalytic domains. Loop1 insertion is determinant for the SUMO2/3 activity and specificity on SENP6 and SENP7. To gain structural insights into the role of Loop1, we have designed a chimeric SENP2 with the insertion of Loop1 into its sequence. The structure of SENP2‐Loop1 in complex with SUMO2 was solved at 2.15 Å resolution, and reveals the details of an interface exclusive to SENP6/7 and the formation of unique contacts between both proteins. Interestingly, functional data with SUMO substrates showed an increase of the proteolytic activity in the SENP2‐Loop1 chimera for diSUMO2 and polySUMO2 substrates.  相似文献   

19.
Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG.  相似文献   

20.
G-protein coupled receptor interacting scaffold protein (GISP) is a multi-domain, brain-specific protein derived from the A-kinase anchoring protein (AKAP)-9 gene. Using yeast two-hybrid screens to identify GISP interacting proteins we isolated the SUMO conjugating enzyme Ubc9. GISP interacts with Ubc9 in vitro, in heterologous cells and in neurons. SUMOylation is a post-translational modification in which the small protein SUMO is covalently conjugated to target proteins, modulating their function. Consistent with its interaction with Ubc9, we show that GISP is SUMOylated by both SUMO-1 and SUMO-2 in both in vitro SUMOylation assays and in mammalian cells. Intriguingly, SUMOylation of GISP in neurons occurs in an activity-dependent manner in response to chemical LTP. These data suggest that GISP is a novel neuronal SUMO substrate whose SUMOylation status is modulated by neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号