首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokine-driven cell cycling is mediated through Cdc25A   总被引:4,自引:1,他引:3       下载免费PDF全文
Lymphocytes are the central mediators of the immune response, requiring cytokines for survival and proliferation. Survival signaling targets the Bcl-2 family of apoptotic mediators, however, the pathway for the cytokine-driven proliferation of lymphocytes is poorly understood. Here we show that cytokine-induced cell cycle progression is not solely dependent on the synthesis of cyclin-dependent kinases (Cdks) or cyclins. Rather, we observe that in lymphocyte cell lines dependent on interleukin-3 or interleukin-7, or primary lymphocytes dependent on interleukin 7, the phosphatase Cdc25A is the critical mediator of proliferation. Withdrawal of IL-7 or IL-3 from dependent lymphocytes activates the stress kinase, p38 MAPK, which phosphorylates Cdc25A, inducing its degradation. As a result, Cdk/cyclin complexes remain phosphorylated and inactive and cells arrest before the induction of apoptosis. Inhibiting p38 MAPK or expressing a mutant Cdc25A, in which the two p38 MAPK target sites, S75 and S123, are altered, renders cells resistant to cytokine withdrawal, restoring the activity of Cdk/cyclin complexes and driving the cell cycle independent of a growth stimulus.  相似文献   

2.
The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance   总被引:20,自引:0,他引:20  
IL-7 is well known as a lymphopoietic cytokine, but recent studies have also identified a critical role for IL-7 in peripheral T cell homeostasis. IL-7 is well poised to serve as a homeostatic cytokine because it is produced by resting stromal cells, the IL-7R is present on most T cells, and IL-7 down-regulates its own receptor. These features allow IL-7 to signal large numbers of resting T cells and to be efficiently used when supplies are limiting. Consistent with this, in normal hosts, IL-7 is required for survival of naive T cell populations, and IL-7 contributes to homeostatic cycling of naive and memory cells. In addition, lymphopenic hosts accumulate increased levels of IL-7, and the supranormal levels are largely responsible for inducing homeostatic peripheral expansion in response to lymphopenia. Thus, IL-7 plays critical and nonredundant roles in both T cell lymphopoiesis and in maintaining and restoring peripheral T cell homeostasis.  相似文献   

3.
IL-7 plays a major role in T lymphocyte homeostasis and has been proposed as an immune adjuvant for lymphopenic patients. This prospect is based, at least in part, on the short-term expansion of peripheral T cells in rIL7-treated mice and primates. Nevertheless, in vivo, following initial increases in T cell proliferation and numbers, lymphocytes return to a quiescent state. As the bases for this cell cycle exit have not yet been elucidated, it is important to assess the long-term biological effects of IL-7 on quiescent human T lymphocyte subsets. In this study, we find that IL-7-stimulated CD4+ naive lymphocytes enter into cell cycle with significantly delayed kinetics as compared with the memory population. Importantly though, these lymphocytes exit from the cell cycle despite the continuous replenishment of rIL-7. This response is distinct in memory and naive CD4+ lymphocytes with memory cells starting to exit from cycle by day 10 vs day 18 for naive cells. Return to quiescence is associated with a cessation in IL-7R signaling as demonstrated by an abrogation of STAT-5 phosphorylation, despite an up-regulation of surface IL-7Ralpha. Indeed, an initial 10-fold decrease in IL-7Ralpha mRNA levels is followed by increased IL-7Ralpha expression in naive as well as memory T cells, with kinetics paralleling cell cycle exit. Altogether, our data demonstrate that IL-7 promotes the extended survival of both naive and memory CD4+ T cells, whereas cycling of these two subsets is distinct and transient. Thus, IL-7 therapy should be designed to allow optimal responsiveness of naive and memory T cell subsets.  相似文献   

4.
IL-7 is essential for the development and survival of T lymphocytes. This review is primarily from the perspective of the cell biology of the responding T cell. Beginning with IL-7 receptor structure and regulation, the major signaling pathways appear to be via PI3K and Stat5, although the requirement for either has yet to be verified by published knockout experiments. The proliferation pathway induced by IL-7 differs from conventional growth factors and is primarily through posttranslational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating phosphatase. The survival function of IL-7 is largely through maintaining a favorable balance of bcl-2 family members including Bcl-2 itself and Mcl-1 on the positive side, and Bax, Bad and Bim on the negative side. There are also some remarkable metabolic effects of IL-7 withdrawal. Studies of IL-7 receptor signaling have yet to turn up unique pathways, despite the unique requirement for IL-7 in T cell biology. There remain significant questions regarding IL-7 production and the major producing cells have yet to be fully characterized.  相似文献   

5.
Estrogens induce proliferation of estrogen receptor (ER)-positive MCF-7 breast cancer cells by stimulating G(1)/S transition associated with increased cyclin D1 expression, activation of cyclin-dependent kinases (Cdks), and phosphorylation of the retinoblastoma protein (pRb). We have utilized blockade of cyclin D1-Cdk4 complex formation through adenovirus-mediated expression of p16(INK4a) to demonstrate that estrogen regulates Cdk inhibitor expression and expression of the Cdk-activating phosphatase Cdc25A independent of cyclin D1-Cdk4 function and cell cycle progression. Expression of p16(INK4a) inhibited G(1)/S transition induced in MCF-7 cells by 17-beta-estradiol (E(2)) with associated inhibition of both Cdk4- and Cdk2-associated kinase activities. Inhibition of Cdk2 activity was associated with delayed removal of Cdk-inhibitory activity in early G(1) and decreased cyclin A expression. Cdk-inhibitory activity and expression of both p21(Cip1) and p27(Kip1) was decreased, however, in both control and p16(INK4a)-expressing cells 20 h after estrogen treatment. Expression of Cdc25A mRNA and protein was induced by E(2) in control and p16(INK4a)-expressing MCF-7 cells; however, functional activity of Cdc25A was inhibited in cells expressing p16(INK4a). Inhibition of Cdc25A activity in p16(INK4a)-expressing cells was associated with depressed Cdk2 activity and was reversed in vivo and in vitro by active Cdk2. Transfection of MCF-7 cells with a dominant-negative Cdk2 construct inhibited the E(2)-dependent activation of ectopic Cdc25A. Supporting a role for Cdc25A in estrogen action, antisense CDC25A oligonucleotides inhibited estrogen-induced Cdk2 activation and DNA synthesis. In addition, inactive cyclin E-Cdk2 complexes from p16(INK4a)-expressing, estrogen-treated cells were activated in vitro by treatment with recombinant Cdc25A and in vivo in cells overexpressing Cdc25A. The results demonstrate that functional association of cyclin D1-Cdk4 complexes is required for Cdk2 activation in MCF-7 cells and that Cdk2 activity is, in turn, required for the in vivo activation of Cdc25A. These studies establish Cdc25A as a growth-promoting target of estrogen action and further indicate that estrogens independently regulate multiple components of the cell cycle machinery, including expression of p21(Cip1) and p27(Kip1).  相似文献   

6.
The highly conserved small Rho G-protein, Cdc42p plays a critical role in cell polarity and cytoskeleton organization in all eukaryotes. In the yeast Saccharomyces cerevisiae, Cdc42p is important for cell polarity establishment, septin ring assembly, and pheromone-dependent MAP-kinase signaling during the yeast mating process. In this study, we further investigated the role of Cdc42p in the mating process by screening for specific mating defective cdc42 alleles. We have identified and characterized novel mating defective cdc42 alleles that are unaffected in vegetative cell polarity. Replacement of the Cdc42p Val36 residue with Met resulted in a specific cell fusion defect. This cdc42[V36M] mutant responded to mating pheromone but was defective in cell fusion and in localization of the cell fusion protein Fus1p, similar to a previously isolated cdc24 (cdc24-m6) mutant. Overexpression of a fast cycling Cdc42p mutant suppressed the cdc24-m6 fusion defect and conversely, overexpression of Cdc24p suppressed the cdc42[V36M] fusion defect. Taken together, our results indicate that Cdc42p GDP-GTP cycling is critical for efficient cell fusion.  相似文献   

7.
Cytokine therapies in HIV infection   总被引:1,自引:0,他引:1  
The theoretical objectives of cytokine therapies in HIV infection are to impact T cell homeostasis and/or to improve immune functions or the mobilization of the HIV reservoir. Among cytokines, IL-2 and IL-7 are promising agents under clinical evaluation. Intermittent administration of IL-2 is by far the furthest studied strategy in HIV infection. This cytokine increases CD4 T lymphocytes in HIV-infected individuals. Recent clinical data showed that this effect is sustained over years. IL-2 therapy induces a peripheral expansion of T cells as a consequence of prolonged survival of T cells and decreased immune activation. These effects suggest that a cytokine therapy may interfere with critical factors of HIV disease. Recent data provide arguments that IL-2 therapy improves immune functions in HIV-infected patients. Whether these effects may be translated into clinical benefits is under evaluation in ongoing phase III studies. The potential interest of IL-7 in the treatment of HIV-infection is based on its crucial role on T cell homeostasis both in thymic output and peripheral T proliferation and survival. Although no data in human are still available, recent studies provide arguments to assess this cytokine in HIV infection. Phase I studies are ongoing or planned.  相似文献   

8.
IL-7 plays a crucial role in controlling T cell development and homeostasis. Since IL-7 may be derived from extraintestinal sources, and exogenous IL-7 broadly affects lymphoid populations, the actions of epithelial cell (EC)-derived IL-7 are not fully understood. The effect of intestinal specific expression of IL-7 on intestinal mucosal lymphocytes was investigated by using an IL-7 transgenic mouse model. We generated an intestinal EC-specific overexpressing IL-7 transgenic mouse model (IL-7(vill)) and compared their phenotype and function to wild-type C57BL/6J mice. EC-derived IL-7 overexpression was found to be exclusively in the small and large intestine. Numbers and subtypes of mucosal lymphocytes, including intraepithelial lymphocytes (IEL) and lamina propria lymphocytes (LPL), significantly changed in IL-7(vill) mice. From a functional standpoint, IEL proliferation also significantly increased in IL-7(vill) mice. IEL cytokine expression significantly changed in both T cell receptor (TCR)-alphabeta(+) and TCR-gammadelta(+) IEL subpopulations, including a significant increase in IFN-gamma and TNF-alpha as well as an increase in keratinocyte growth factor expression. EC expression of CD103 (integrin alpha(E)beta(7)), the ligand of E-cadherin, markedly upregulated and may account for a mechanism of the massive expansion of IEL in transgenic mice. Systemic lymphoid populations did not change in transgenic mice. IL-7 overexpression by intestinal EC significantly affected IEL phenotype and function. These results offer insight into the role of IL-7 in IEL development and suggest a critical role of EC-derived expression of IL-7 in the phenotype and function of IEL.  相似文献   

9.
Experimental evidence documents that the MDA-7/IL-24 protein (an IL-10 family cytokine) binds to IL-20 and IL-22 receptor complexes resulting in the activation of JAK/STAT signaling pathways. Recent published reports utilizing human blood derived primary lymphocytes have provided additional confirmatory evidence relating to the cytokine properties of this molecule. A notable attribute of mda-7/IL-24 is its cancer cell-specific apoptosis inducing capacity, which currently remains incompletely understood. Treatment with distinctive tyrosine kinase inhibitors (Genistein and AG18) or a JAK-selective inhibitor (AG490) did not prevent Ad.mda-7 induced apoptosis in diverse cell lines. In addition, there is no apparent correlation between patterns of expression of IL-20R1, IL-20R2, and IL-22R mRNA and susceptibility to Ad.mda-7 in different cell lines. Furthermore, Ad.mda-7 is able to induce killing in STAT/JAK deficient cells. In contrast, treatment with the p38(MAPK) selective inhibitor SB203580, partially inhibited apoptosis induced by Ad.mda-7 in different cell lines. These results demonstrate for the first time that signaling events leading to susceptibility to Ad.mda-7 induced apoptosis, might be tyrosine kinase independent and can thus be distinguished from its cytokine function related properties mediated by the IL-20/IL-22 receptor complexes that require JAK/STAT kinase activity.  相似文献   

10.
MG7-Ag is a human gastric-carcinoma-associated antigen with a high specificity. So far it is remained unclear whether MG7-Ag is correlated with the in vivo cellular immune response of patients with gastric cancer. In this study, we detected the expression of the T cell receptor (TCR) repertoire of T cell subpopulations and cytokines in tumor-infiltrating lymphocytes (TIL), peripheral blood lymphocytes (PBL), and residue benign mucosal lymphocytes (NML) of patients with gastric cancer using semiquantitative RT-PCR. Our data showed that the expanded clones in CD8(+) NML and TIL and CD4+ NML and PBL in MG7-Ag-positive patients were significantly fewer than those of MG7-Ag-negative patients (p = 0.0360; p = 0.0026; p = 0.0065 p = 0.0109, respectively). The levels of IL-8 in CD8(+) TIL and TNF in CD4(+) TIL from the MG7-Ag-positive group were significantly higher than those from the MG7-Ag-negative group (p = 0.0302; p = 0.0177, respectively). Taken together, the results demonstrated a weaker T cell immune response and more proinflammatory cytokine secretion in MG7-Ag-positive patients with gastric cancer than in MG7-Ag-negative ones. This likely contributes to the poor prognosis in MG7-Ag-positive gastric-cancer patients.  相似文献   

11.
Cdc25A, a phosphatase essential for G1-S transition, associates with, dephosphorylates, and activates the cell cycle kinase cyclin E-cdk2. p21CIP1 and p27 are cyclin-dependent kinase (cdk) inhibitors induced by growth-suppressive signals such as p53 and transforming growth factor beta (TGF-beta). We have identified a cyclin binding motif near the N terminus of Cdc25A that is similar to the cyclin binding Cy (or RR LFG) motif of the p21CIP1 family of cdk inhibitors and separate from the catalytic domain. Mutations in this motif disrupt the association of Cdc25A with cyclin E- or cyclin A-cdk2 in vitro and in vivo and selectively interfere with the dephosphorylation of cyclin E-cdk2. A peptide based on the Cy motif of p21 competitively disrupts the association of Cdc25A with cyclin-cdks and inhibits the dephosphorylation of the kinase. p21 inhibits Cdc25A-cyclin-cdk2 association and the dephosphorylation of cdk2. Conversely, Cdc25A, which is itself an oncogene up-regulated by the Myc oncogene, associates with cyclin-cdk and protects it from inhibition by p21. Cdc25A also protects DNA replication in Xenopus egg extracts from inhibition by p21. These results describe a mechanism by which the Myc- or Cdc25A-induced oncogenic and p53- or TGF-beta-induced growth-suppressive pathways counterbalance each other by competing for cyclin-cdks.  相似文献   

12.
13.
In unfertilized Xenopus eggs, the p42 mitogen activated protein kinase (p42MAPK) pathway isknown to maintain cell cycle arrest at metaphase of meiosis II. However, constitutive activation ofp42MAPK in post-meiotic, cycling Xenopus egg extracts can lead to either a G2 or M-phase arrestof the cell cycle, depending on the timing of p42MAPK activation. Here, we examined themolecular mechanism by which activation of the p42MAPK pathway during interphase leads to cellcycle arrest in G2. When either a recombinant wild type Cdc25C(WT) or a mutated form ofCdc25C, in which serine 287 was replaced by an alanine (S287A), was added to cycling eggextracts, S287A accelerated entry into M-phase. Furthermore, the addition of S287A overcame theG2 arrest caused by p42MAPK, driving the extract into M-phase. p90Rsk, a kinase that is the targetof p42MAPK, was phosphorylated and activated (pp90Rsk) in the G2-arrested egg extracts, and wasable to phosphorylate WT but not S287A in vitro. 14-3-3 proteins were associated with endogenousCdc25C in G2-arrested extracts. Cdc25C(WT) that had been phosphorylated by pp90Rsk bound 14-3-3?, whereas S287A could not. These data suggest that the link between the p42MAPK signalingpathway and Cdc25C involves the activation of pp90Rsk and its phosphorylation of Cdc25C at S287,causing the binding of 14-3-3 proteins. We propose that the binding of 14-3-3 proteins to pp90Rskphosphorylated-Cdc25C results in a G2 arrest in a manner similar to the cell cycle delays inducedby differentiation signals that occur later in embryonic development.  相似文献   

14.
IL-2 and IL-15 are cytokines involved in T cell activation and death. Their non-shared receptors, IL-2Ralpha and IL-15Ralpha, are important in the homeostasis of lymphocytes as evidenced by gene deletion studies. How these cytokine/receptor systems affect T cell antigen receptor signaling pathways is poorly understood. Here, we show that the IL-2 and IL-15 cytokine/receptor alpha systems regulate activation of nuclear factor of activated T cells (NF-AT) in opposing ways. IL-15Ralpha increased while IL-2Ralpha decreased basal NF-AT activation status in a Jurkat transient transfection model. The effect of each of the alpha chain receptors on NF-AT activation was further opposed by addition of the respective cytokine. These effects were inhibited by anti-cytokine and anti-cytokine receptor reagents as well as by inhibitors of TCR signaling. These results suggest a novel pathway of cytokine action to regulate T cell signaling, activation, death, and homeostasis.  相似文献   

15.
The proto-oncogene Pim-1 encodes a serine-threonine kinase which is a downstream effector of cytokine signaling and can enhance cell cycle progression by altering the activity of several cell cycle regulators among them the G1 specific inhibitor p21(Waf), the phosphatase Cdc25A and the kinase C-TAK1. Here, we demonstrate by using biochemical assays that Pim-1 can interact with the phosphatase Cdc25C and is able to directly phosphorylate the N-terminal region of the protein. Cdc25C is functionally related to Cdc25A but acts specifically at the G2/M cell cycle transition point and can be inactivated by C-TAK1-mediated phosphorylation. Immuno-fluorescence experiments showed that Pim-1 and Cdc25C co-localize in the cytoplasm of both epithelial and myeloid cells. We find that phosphorylation by Pim-1 enhances the phosphatase activity of Cdc25C and in transfected cells that are arrested in G2/M by bleomycin, Pim-1 can enhance progression into G1. Therefore, we propose that Pim-1 activates Cdc25C by a direct phosphorylation and can thereby assume the function of a positive cell cycle regulator at the G2/M transition.  相似文献   

16.
3,3'-Diindolylmethane (DIM) is a potential cancer preventive phytochemical derived from Brassica vegetables. The effects of DIM on cell-cycle regulation in both estrogen-dependent MCF-7 and estrogen receptor negative p53 mutant MDA-MB-468 human breast cancer cells were assessed in this study. DIM inhibited the breast cancer cell growth in vitro and in vivo, and caused cell-cycle arrest by down-regulating protein levels of cell-cycle related kinases CDK1, CDK2, CDK4, and CDK6, as well as Cyclin B1 and Cdc25A. Meanwhile, it was revealed that Ser(124) phosphorylation of Cdc25A is primarily responsible for the DIM-induced Cdc25A degradation. Furthermore, treatment of MCF-7 cells with DIM increased miR-21 expression and down-regulated Cdc25A, resulting in an inhibition of breast cancer cell proliferation. These observations collectively suggest that by differentially modulating cellular signaling pathways DIM is able to arrest the cell-cycle progression of human breast cancer cells.  相似文献   

17.
18.
Regulation of T cell homeostasis by heparan sulfate-bound IL-2.   总被引:9,自引:0,他引:9  
Although IL-2 is commonly thought to promote proliferation of T lymphocytes, mice deficient in IL-2 exhibit splenomegaly, lymphocytosis, and autoimmunity, suggesting this cytokine may have a prominent role in T cell homeostasis. Since the number of T cells in the bloodstream and lymphoid organs is tightly controlled, it is likely that the availability of IL-2 must also be closely regulated. One mechanism altering the local availability of cytokines is association with heparan sulfate, a glycosaminoglycan found on cell surfaces and within extracellular matrices. Here we show that an association between IL-2 and heparan sulfate localizes IL-2 to lymphoid organs such as the spleen. We also show that IL-2, sequestered in this way, contributes to the activation of T lymphocytes and primes T lymphocytes for activation-induced cell death.  相似文献   

19.
Lymphopenia-induced proliferation (LIP) is a proliferative program initiated in response to T cell insufficiency caused by acute or chronic immunodepletion. Studies of lymphopenic mice have demonstrated that the cytokine IL-7 and TCR signaling are critical for LIP. We examined how these two factors impact T cell proliferation following transfer into moderately lymphopenic mice. In this study, we show that moderate lymphopenia (~25% of wild-type lymphocytes) of IL-7Rα knock-in mutant (IL-7Rα(449F)) mice supports T cell proliferation, although with decreased frequency and kinetics compared with cells transferred to severely lymphopenic (5% of wild-type lymphocytes) IL-7Rα(-/-) hosts. Although previous studies have demonstrated that elevated IL-7 levels play an important role in LIP, IL-7 availability was not elevated in IL-7Rα(449F) mice. However, moderate lymphopenia increased access of transferred T cells to self-peptide presented on APCs that can trigger TCR signaling and proliferation. Importantly, we did not detect significant changes in TCR Vβ usage of proliferated T cells recovered from either moderately or severely lymphopenic hosts. Our work demonstrates that polyclonal T cells retain a diverse TCR repertoire following proliferation mediated by either self-peptide-MHC interaction alone or in combination with IL-7, and that T cell reconstitution is most efficient in the presence of increased IL-7 availability.  相似文献   

20.
Interleukin-7 (IL-7) is a stromal factor that is crucial for the development of T lymphocytes in humans and mice, and also B lymphocytes in mice. IL-7 can act as a T cell growth factor as well as a critical anti-apoptotic survival factor. The essential non-redundant role of this cytokine for T cell development in vivo is indicated by the phenotype of murine knockout models as well as by humans with a T-B+NK+ form of severe combined immunodeficiency (SCID) resulting from mutations in IL-7 receptor alpha chain. IL-7 deficiency has now been found in patients with rheumatoid arthritis, a finding that relates not only to the T-lymphocyte status in this disease but also to the ability of patients with rheumatoid arthritis to recover from therapy-induced lymphopenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号