首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells.  相似文献   

3.
目的:构建SETD8重组慢病毒载体,探讨SETD8对人乳腺癌细胞周期、氧化应激的影响,并观察稳定敲低SETD8后对乳腺癌细胞多西他赛敏感性的影响。方法:构建含SETD8基因的重组慢病毒载体,经转染,荧光显微镜观察感染效率;采用RT-qPCR和Western blot检测SETD8 m RNA和蛋白相对表达量;采用流式细胞技术检测细胞周期及活性氧水平,通过CCK-8试剂检测稳定敲低SETD8基因的乳腺癌细胞对多西他赛的敏感性变化。结果:成功包装慢病毒,荧光观察慢病毒感染效率在85%左右,通过PCR和WB验证SETD8过表达及敲低稳转细胞系的效率显著(P0.01)。低表达SETD8的乳腺癌细胞周期停滞在G2/M和S期,细胞内ROS水平高于对照组。不同浓度多西他赛处理的SETD8敲低稳转细胞系的细胞活性较对照组明显降低(P0.01)。结论:慢病毒介导下调SETD8表达,使得乳腺癌细胞周期阻滞在G2/M期,细胞内ROS增多,与多西他赛发生协同作用,从而增加了药物敏感性。  相似文献   

4.
5.
目的:探讨乳腺癌MDA-MB-231细胞中,Y性别决定区基因7(SOX7)基因启动子甲基化水平对细胞的体外迁移和侵袭的影响。方法:脂质体转染pcDNA3.0-DNA甲基转移酶3a(DNMT3a)质粒至MDA-MB-231细胞中,并于24h、48h及72h后,采用蛋白质免疫印迹实验(WB)检测细胞内DNMT3a蛋白表达水平;甲基化特异性定量PCR(Q-MSP)检测DNMT3a处理组、5-aza-C处理组及对照(Control)组MDA-MB-231细胞中的SOX7基因启动子DNA甲基化水平;实时荧光定量PCR(qRT-PCR)及WB实验检测各组MDA-MB-231细胞中的SOX7 m RNA和蛋白表达水平;细胞划痕实验及细胞侵袭实验检测各组MDA-MB-231细胞的迁移和侵袭能力。结果:pcDNA3.0-DNMT3a质粒转染MDA-MB-231细胞24h时,细胞内的DNMT3a蛋白表达水平最高。DNMT3a能够显著提高SOX7基因启动子DNA甲基化水平,而5-aza-C则抑制了SOX7基因启动子DNA甲基化水平(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞中,SOX7的m RNA及蛋白表达水平均明显下降,而5-aza-C处理组SOX7的m RNA及蛋白表达水平均明显增加(P0.05)。与Control组相比,DNMT3a处理组的MDA-MB-231细胞的迁移和侵袭能力均显著增强(P0.05),而5-aza-C处理组的MDA-MB-231细胞的迁移和侵袭能力变化不大(P0.05)。结论:在恶性肿瘤中,SOX7低表达表受其基因启动子高甲基化调节,且乳腺癌MDA-MB-231细胞中低表达的SOX7能够影响细胞的外迁移和侵袭能力。  相似文献   

6.
The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and re-expression of HIN1, RASSF1A and CCND2. Conversely, NRF2 activation induces opposite effects. We also show that parthenolide, a naturally occurring small molecule, induces the expression of miR-29b-1-5p which could suppress NRF2 activation via AKT inhibition. Overall, this study uncovers a novel NRF2/miR-29b-1-5p/AKT regulatory loop that can regulate the fate (life/death) of MDA-MB-231 cells and suggests this loop as therapeutic target for TNBC.  相似文献   

7.
Tetraiodothyroacetic acid (tetrac) inhibits the cellular actions of thyroid hormone initiated at the hormone receptor on plasma membrane integrin αvβ3. Via interaction with the integrin, tetrac is also capable of inhibiting the angiogenic effects of vascular endothelial growth factor and basic fibroblast growth factor. MDA-MB-231 cells are estrogen receptor-negative human breast cancer cells shown to be responsive to tetrac in terms of decreased cell proliferation. Here we describe actions initiated at the cell surface receptor by unmodified tetrac and nanoparticulate tetrac on a panel of survival pathway genes in estrogen receptor-negative human breast cancer (MDA-MB-231) cells. Nanoparticulate tetrac is excluded from the cell interior. Expression of apoptosis inhibitors XIAP (X-linked inhibitor of apoptosis) and MCL1 (myeloid cell leukemia sequence 1) was downregulated by nanoparticulate tetrac in these breast cancer cells whereas apoptosis-promoting CASP2 and BCL2L14 were upregulated by the nanoparticulate formulation. Unmodified tetrac affected only XIAP expression. Expression of the angiogenesis inhibitor thrombospondin 1 (THBS1) gene was increased by both formulations of tetrac, as was the expression of CBY1, a nuclear inhibitor of catenin activity. The majority of differentially regulated Ras-oncogene family members were downregulated by nanoparticulate tetrac. The latter downregulated expression of epidermal growth factor receptor gene and unmodified tetrac did not. Nanoparticulate tetrac has coherent anti-cancer actions on expression of differentially-regulated genes important to survival of MDA-MB-231 cells.  相似文献   

8.
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00649-9.  相似文献   

9.
10.
11.
Triple-negative breast cancer, devoid of estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER-2) expression, is deprived of commonly used targeted therapies. MicroRNAs (miRNAs) are undergoing a revolution in terms of potentially diagnostic or therapeutic elements. Combining computational approaches, we enriched miRNA binding motifs of Wnt pathway-associated upregulated genes. Our in-depth bioinformatics, in vitro and in vivo analyses indicated that miR-381 targets main genes of the Wnt signaling pathway including CTNNB1, RhoA, ROCK1, and c-MYC genes. The expression level of miR-381 and target genes was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) in MCF-7, MDA-MB-231, and MCF-10A as well as 20 breast cancer samples and normal tissues. Luciferase reporter assay was performed. Lentiviral particles containing miR-381 were used to evaluate the effect of miR-381 restoration on cell proliferation, migration, and invasion of the invasive triple-negative MDA-MB-231 cell line and also in a mouse model of breast cancer. The expression of miR-381 was lower than that of normal cells, especially in TNBC cell line and breast tissues. Luciferase assay results confirmed that miR-381 targets all the predicted 3′-untranslated regions (3′-UTRs). Upon miR-381 overexpression, the expression of target genes declined, and the migration and invasion potential of miR-381-receiving MDA-MB-231 cells decreased. In a mouse model of triple-negative breast cancer, miR-381 re-expression inhibited the invasion of cancer cells to lung and liver and prolonged the survival time of cancer cell-bearing mice. Therefore, miR-381 is a regulator of Wnt signaling and its re-expression provides a potentially effective strategy for inhibition of TNBC.  相似文献   

12.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 μM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

13.
Breast cancer is a heterogeneous disease with distinct subtypes that have made targeted therapy of breast cancer challenging. Previous studies have demonstrated that an altered autophagy capacity can influence the development of breast cancer. However, the molecular differences in starvation-induced autophagic responses in MDA-MB-231 and MCF-7 cells have not been fully elucidated. In this study, we found that an increase of LC3B-II protein expression level and a decrease of the p62 protein expression level in both cells treated by Earle’s balanced salt solution. Meanwhile, we observed an increase of autophagosome using transmission electron microscopy and an enhancement in the green fluorescence intensity of LC3B protein by confocal microscopy. Furthermore, we detected the expression of 13 autophagy-related (ATG) genes and 11 autophagy signaling pathway-related genes using qPCR. Among 13 ATG genes, we found that 6 genes were up-regulated in treated MDA-MB-231 cells, while 4 genes were up-regulated and 1 gene was down-regulated in treated MCF-7 cells. In addition, among 11 autophagy signaling pathway-related genes, 7 genes were up-regulated in treated MDA-MB-231 cells, while 5 genes were up-regulated and 1 gene was down-regulated in treated MCF-7 cells. These findings suggest that the autophagic response to starvation was different in the two treated cell lines, which will contribute to further study on the molecular mechanism of starvation-induced autophagy and improve the targeted therapy of breast cancer.  相似文献   

14.
Real space flight and modeled microgravity conditions result in changes in the expression of genes that control important cellular functions. However, the mechanisms for microgravity‐induced gene expression changes are not clear. The epigenetic changes of DNA methylation and chromatin histones modifications are known to regulate gene expression. The objectives of this study were to investigate whether simulated microgravity alters (a) the DNA methylation and histone acetylation, and (b) the expression of DNMT1, DNMT3a, DNMT3b, and HDAC1 genes that regulate epigenetic events. To achieve these objectives, human T‐lymphocyte cells were grown in a rotary cell culture system (RCCS) that simulates microgravity, and in parallel under normal gravitational conditions as control. The microgravity‐induced DNA methylation changes were detected by methylation sensitive‐random amplified polymorphic DNA (MS‐RAPD) analysis of genomic DNA. The gene expression was measured by Quantitative Real‐time PCR. The expression of DNMT1, DNMT3a, and DNMT3b was found to be increased at 72 h, and decreased at 7 days in microgravity exposed cells. The MS‐RAPD analysis revealed that simulated microgravity exposure results in DNA hypomethylation and mutational changes. Gene expression analysis revealed microgravity exposure time‐dependent decreased expression of HDAC1. Decreased expression of HDAC1 should result in increased level of acetylated histone H3, however a decreased level of acetylated H3 was observed in microgravity condition, indicating thereby that other HDACs may be involved in regulation of H3 deacetylation. The findings of this study suggest that epigenetic events could be one of the mechanistic bases for microgravity‐induced gene expression changes and associated adverse health effects. J. Cell. Biochem. 111: 123–129, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Epigenetic changes, such as DNA methylation, have been shown to promote breast cancer progression. However, the mechanism by which cancer cells acquire and maintain abnormal DNA methylation is not well understood. We have previously identified an aberrant splice form of a DNA methyltransferase, DNMT3B7, expressed in virtually all cancer cell lines but at very low levels in normal cells. Furthermore, aggressive MDA-MB-231 breast cancer cells have been shown to express increased levels of DNMT3B7 compared to poorly invasive MCF-7 cells, indicating that DNMT3B7 may have a role in promoting a more invasive phenotype. Using data gathered from The Cancer Genome Atlas, we show that DNMT3B7 expression is increased in breast cancer patient tissues compared to normal tissue. To determine the mechanism by which DNMT3B7 was functioning in breast cancer cells, two poorly invasive breast cancer cell lines, MCF-7 and T-47D, were stably transfected with a DNMT3B7 expression construct. Expression of DNMT3B7 led to hypermethylation and down-regulation of E-cadherin, altered localization of β-catenin, as well as increased adhesion turnover, cell proliferation, and anchorage-independent growth. The novel results presented in this study suggest a role for DNMT3B7 in the progression of breast cancer to a more aggressive state and the potential for future development of novel therapeutics.  相似文献   

16.
Today, prognosis, diagnosis and treatment of cancers are progressing with non-invasive methods, including investigation and modification of the DNA methylation profile in cancer cells. One of the effective factors in regulating gene expression in mammals is DNA methylation. Methylation alterations of genes by external factors can change the expression of genes and inhibit the cancer. In the present study, we investigated the effect of Down syndrome critical region 1 gene (DSCR1) ectopic expression on the methylation status of the BCL-XL, ITGA6, TCF3, RASSF1A, DOK7, VIM and CXCR4 genes in breast cancer cell lines. The effect of DSCR1 ectopic expression on cell viability in MCF7, MDA-MB-468, MDA-MB-231 and MCF10A cell lines was evaluated using MTT assay after the cells treated by lentivirus vectors harboring DSCR1 for 72 hours. Methylation status of BCL-XL, ITGA6, TCF3, RASSF1A, DOK7, VIM and CXCR4 genes in breast cancer cell lines was assessed by Restriction Enzyme PCR (REP) method. Also, methylation changes of these genes in breast cancer cell lines after treatment by lentivirus vectors harboring DSCR1 for 7 days were analyzed by REP method. To confirm the effect of DSCR1 on methylation of genes, Real-time PCR was performed. The MTT assay results indicated that DSCR1 ectopic expression reduced cell viability in all three human breast cancer cell lines. Our results showed that DSCR1 ectopic expression after 6 days reversed the hypomethylation status of the BCL-XL, ITGA6, TCF3, VIM and CXCR4 genes and hypermethylation of RASSF1A and DOK7 genes. The expression levels of BCL-XL, ITGA6, TCF3, VIM and CXCR4 mRNA significantly reduced (P<0.05) and the expression levels of RASSF1A and DOK7 mRNA significantly increased (P<0.05). Our findings reveal for the first time the impact of DSCR1 ectopic expression on the methylation status of breast cancer cells and identify a novel agent for epigenetic therapy.  相似文献   

17.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

18.
19.
20.
Based on the efficacy of EHop-016 as an inhibitor of migration and Rac1 activation, a new series of carbazole derivatives has been synthesized. Cytotoxic and anti-migratory effects of these compounds were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. Preliminary investigations of their anticancer activity demonstrated that several compounds have moderate antiproliferative effects on cancer cell lines with GI50 values in the range of 13–50?µM. Furthermore, compounds 3b and 11b inhibit migration activity of metastatic cell line MDA-MB-231 by 32% and 34%, respectively. Compound 11b was shown to inhibit activation of the Rho GTPase Rac1 by 55% at 250?nM in both MDA-MB-231 and MDA-MB-435 cell lines. Compared with the IC50 of Rac1 inhibition by lead compound EHop-016 of 1.1?µM, compound 11b demonstrates 4X improved in vitro efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号