首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Chen Q  Lin L  Smith S  Lin Q  Zhou J 《Developmental biology》2005,286(2):629-636
In complex genomes, insulators set up chromatin domain boundaries and protect promoters from inappropriate activation by enhancers from neighboring genes. The Drosophila Abdominal-B locus uses insulator elements to organize its large regulatory region into several body segment-specific chromatin domains. This organization leads to a problem in enhancer-promoter communication, that is, how do distal enhancers activate the Abd-B promoter when there are several insulators in between? This issue is partially resolved by the Promoter Targeting Sequence, which can overcome the enhancer blocking effect of an insulator. In this study, we describe a new Promoter Targeting Sequence, PTS-6, from the Abd-B 3' regulatory region. PTS-6, comprised of approximately 200 bp, was found to bypass both homologous Abdominal-B insulators, such as Fab-7 and Fab-8, and a heterologous insulator, suHw. Most importantly, it also overcomes a combination of two insulators such as Fab-7/Fab-8. Thus, PTS-6 could, in principle, target remote enhancers that are separated from the Abd-B promoter by multiple insulators. In addition, PTS-6 selectively targets the distal enhancer to only one transgenic promoter, and it strongly facilitates Abd-B enhancers. These results suggest that promoter targeting is necessary for long-range enhancer-promoter communication in Abd-B, and PTS elements could be a common occurrence in large, complex genetic loci.  相似文献   

6.
The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.  相似文献   

7.
Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex.  相似文献   

8.
9.
Zhou J  Levine M 《Cell》1999,99(6):567-575
The Abd-B Hox gene contains an extended 3' cis-regulatory region that is subdivided into a series of separate lab domains. The lab-7 domain activates Abd-B in parasegment 12 (ps12), whereas lab-8 controls expression in ps13. iab-7 is flanked by two insulators, Fab-7 and Fab-8, which are thought to prevent regulatory factors, such as Polycomb silencers, from influencing neighboring iab domains. This organization poses a potential paradox, since insulator DNAs can work in a dominant fashion to block enhancer-promoter interactions over long distances. Here, we present evidence for a novel cis-regulatory sequence located within lab-7, the promoter targeting sequence (PTS), which permits distal enhancers to overcome the blocking effects of Fab-8 and the heterologous su(Hw) insulator. We propose that the PTS converts dominant, long-range insulators into local regulatory elements that separate neighboring lab domains.  相似文献   

10.
One facet of the control of gene expression is long-range promoter regulation by distant enhancers. It is an important component of the regulation of genes that control metazoan development and has been appreciated for some time but the molecular mechanisms underlying this regulation have remained poorly understood. A recent study by Cleard and colleagues1 reports the first in vivo evidence of chromatin looping and boundary element promoter interaction. Specifically, they studied the function of a boundary element within the cis-regulatory region of the Abdominal-B (Abd-B) gene of Drosophila melanogaster.  相似文献   

11.
12.
Kyrchanova OV  Ivleva TA  Georgiev PG 《Genetika》2011,47(12):1586-1595
Regulatory region of three bithorax complex genes, Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) can be divided into nine iab domains, capable of directing expression of one of the genes in certain abdominal parasegment of Drosophila. In the Abd-B regulatory region, three insulators were identified, including Fab-7 and Fab-8, which flanked the iab-7domain, and Mcp, which separated the Abd-B and abd-A regulatory regions. It was suggested that boundary insulators formed a barrier between active and repressed chromatin. In the present study, using the yellow and white reporter genes and different combinations of known insulators, Mcp, Fab-7, and Fab-8, it was demonstrated that only specific interaction of two insulators was capable of isolation of active and repressed chromatin, i.e., the formation of independent expression domains.  相似文献   

13.
The E loci in Bombyx mori are expected to contain a homeotic gene complex specifying the identities of the larval abdominal segments. However, the molecular structure of this complex remains to be determined. We have started to analyze the structural changes in the E complex mutations. We used three newly isolated Bombyx homeobox genes as probes. These genes are probably homologues of the Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) in the Drosophila bithorax complex, because the amino-acid sequences of the homeobox regions in these Bombyx genes are almost identical to those of Drosophila genes. We found that the Bombyx Ubx and abd-A genes are deleted in the EN chromosome, and the Bombyx abd-A gene is deleted in the ECa chromosome. From these results, we conclude that the Bombyx E complex consists of the Ubx, abd-A and possibly Abd-B genes, which may play similar roles to their homologues in the Drosophila bithorax complex.  相似文献   

14.
In the Abd-B 3' cis-regulatory region, which is subdivided into a series of iab domains, boundary elements have previously been detected, including the Fab-7 element providing for the autonomous functioning of the iab-6 and iab-7 cis-regulatory domains. Here, it has been shown that a single copy of the 860-bp Fab-7 insulator effectively blocks the yellow and white enhancers. The eye and testis enhancers can stimulate the white promoter across the pair of Fab-7, which is indicative of a functional interaction between the insulators. Unexpectedly, Fab-7 has proved to lose the enhancer-blocking activity when placed near the white promoter. It seems likely that Fab-7 strengthens the relatively weak white promoter, which leads to the efficient enhancer-promoter interaction and insulator bypass.  相似文献   

15.
16.
The Drosophila bithorax complex Abdominal-B (Abd-B) gene specifies parasegmental identity at the posterior end of the fly. The specific pattern of Abd-B expression in each parasegment (PS) determines its identity and, in PS10-13, Abd-B expression is controlled by four parasegment-specific cis-regulatory domains, iab-5 to iab-8, respectively. In order to properly determine parasegmental identity, these four cis-regulatory domains must function autonomously during both the initiation and maintenance phases of BX-C regulation. The studies reported here demonstrate that the (centromere) distal end of iab-7 domain is delimited by the Fab-8 boundary. Initiators that specify PS12 identity are located on the proximal iab-7 side of Fab-8, while initiators that specify PS13 identity are located on the distal side of Fab-8, in iab-8. We use transgene assays to demonstrate that Fab-8 has enhancer blocking activity and that it can insulate reporter constructs from the regulatory action of the iab-7 and iab-8 initiators. We also show that the Fab-8 boundary defines the realm of action of a nearby iab-8 Polycomb Response Element, preventing this element from ectopically silencing the adjacent domain. Finally, we demonstrate that the insulating activity of the Fab-8 boundary in BX-C is absolutely essential for the proper specification of parasegmental identity by the iab-7 and iab-8 cis-regulatory domains. Fab-8 together with the previously identified Fab-7 boundary delimit the first genetically defined higher order domain in a multicellular eukaryote.  相似文献   

17.
The abdominal-A (abd-A) and Abdominal-B (Abd-B) genes of the bithorax complex (BX-C) specify the identity of most of the Drosophila abdomen. Six different classes of infraabdominal (iab) mutations within the BX-C transform a subset of the parasegments affected by the lack of these two genes. It is thought that these mutations define parasegmental cis-regulatory regions that control the expression of abd-A and Abd-B. By staining embryos mutant for different iab mutations with anti-abd-A and anti-Abd-B antibodies I show here that the expression of Abd-B (and probably also abd-A) exhibit a parasegmental regulation. I have also studied the significance of the chromosomal order of parasegmental iab regulatory sequences, and the possible presence of chromosomal 'boundaries' between them, by looking at the expression of abd-A and Abd-B in embryos carrying the Uab and Mcp mutations. These data are discussed in the light of models of parasegmental-specific regulatory regions within the BX-C.  相似文献   

18.
19.
A very large cis-regulatory region of approximately 300 kb is responsible for the complex patterns of expression of the three homeotic genes of the bithorax complex Ubx, abd-A and Abd-B. This region can be subdivided in nine parasegment-specific regulatory subunits. Recent genetic and molecular analysis has revealed the existence of two novel cis-regulatory elements Mcp and Fab-7. Mcp is located between iab-4 and iab-5, the parasegment-specific regulatory subunits which direct Abd-B in parasegments 9 and 10. Similarly, Fab-7 is located between iab-6 and iab-7, the parasegment 11 and 12-specific regulatory units. Mcp and Fab-7 appear to function as domain boundaries that separate adjacent cis-regulatory units. We report the analysis of two new Mcp mutant deletions (McpH27 and McpB116) that allow us to localize sequences essential for boundary function to a approximately 0.4 kb DNA segment. These essential sequences closely coincide to a approximately 0.3 kb nuclease hypersensitive region in chromatin. We also show that sequences contributing to the Fab-7 boundary appear to be spread over a larger stretch of DNA, but like Mcp have an unusual chromatin structure.  相似文献   

20.
Kalay G  Wittkopp PJ 《PLoS genetics》2010,6(11):e1001222
cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of regulatory evolution we observed for yellow is characteristic of genes with rapidly evolving expression patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号