共查询到20条相似文献,搜索用时 0 毫秒
1.
Yin Shi Shi-Hao Tan Shukie Ng Jing Zhou Na-Di Yang Gi-Bang Koo Kerrie-Ann McMahon Robert G Parton Michelle M Hill Miguel A del Pozo You-Sun Kim Han-Ming Shen 《Autophagy》2015,11(5):769-784
CAV1 (caveolin 1, caveolae protein, 22kDa) is well known as a principal scaffolding protein of caveolae, a specialized plasma membrane structure. Relatively, the caveolae-independent function of CAV1 is less studied. Autophagy is a process known to involve various membrane structures, including autophagosomes, lysosomes, and autolysosomes for degradation of intracellular proteins and organelles. Currently, the function of CAV1 in autophagy remains largely elusive. In this study, we demonstrate for the first time that CAV1 deficiency promotes both basal and inducible autophagy. Interestingly, the promoting effect was found mainly in the late stage of autophagy via enhancing lysosomal function and autophagosome-lysosome fusion. Notably, the regulatory function of CAV1 in lysosome and autophagy was found to be caveolae-independent, and acts through lipid rafts. Furthermore, the elevated autophagy level induced by CAV1 deficiency serves as a cell survival mechanism under starvation. Importantly, downregulation of CAV1 and enhanced autophagy level were observed in human breast cancer cells and tissues. Taken together, our data reveal a novel function of CAV1 and lipid rafts in breast cancer development via modulation of lysosomal function and autophagy. 相似文献
2.
Hong Liu Yan Ma Hong-Wei He Jia-Ping Wang Jian-Dong Jiang Rong-Guang Shao 《Autophagy》2015,11(12):2323-2334
Autophagy, a self-catabolic process, has been found to be involved in abrogating the proliferation and metastasis of breast cancer. SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cation proton antiporter 3], member 3 regulator 1), a multifunctional scaffold protein, is involved in suppressing breast cancer cells proliferation and the SLC9A3R1-related signaling pathway regulates the activation of autophagy processes. However, the precise regulatory mechanism and signaling pathway of SLC9A3R1 in the regulation of autophagy processes in breast cancer cells remains unknown. Here, we report that the stability of BECN1, the major component of the autophagic core lipid kinase complex, is augmented in SLC9A3R1-overexpressing breast cancer MDA-MB-231 cells, subsequently stimulating autophagy by attenuating the interaction between BECN1 and BCL2. Initially, we found that SLC9A3R1 partially stimulated autophagy through the PTEN-PI3K-AKT1 signaling cascade in MDA-MB-231 cells. SLC9A3R1 then attenuated the interaction between BECN1 and BCL2 to stimulate the autophagic core lipid kinase complex. Further findings revealed that SLC9A3R1 bound to BECN1 and subsequently blocked ubiquitin-dependent BECN1 degradation. And the deletion of the C-terminal domain of SLC9A3R1 resulted in significantly reduced binding to BECN1. Moreover, the lack of C-terminal of SLC9A3R1 neither reduced the ubiquitination of BECN1 nor induced autophagy in breast cancer cells. The decrease in BECN1 degradation induced by SLC9A3R1 resulted in the activity of autophagy stimulation in breast cancer cells. These findings indicate that the SLC9A3R1-BECN1 signaling pathway participates in the activation of autophagy processes in breast cancer cells. 相似文献
3.
Wenjing Zhou Gang Xu Yunqiu Wang Ziao Xu Xiaofei Liu Xia Xu 《Cell cycle (Georgetown, Tex.)》2017,16(1):73-81
Tumors are comprised of malignant cancer cells and stromal cells which constitute the tumor microenvironment (TME). Previous studies have shown that cancer associated fibroblast (CAF) in TME is an important promoter of tumor initiation and progression. However, the underlying molecular mechanisms by which CAFs influence the growth of colorectal cancer cells (CRCs) have not been clearly elucidated. In this study, by using a non-contact co-culture system between human colorectal fibroblasts (CCD-18-co) and CRCs (LoVo, SW480, and SW620), we found that fibroblasts existing in tumor microenvironment positively influenced the metabolism of colorectal cancer cells, through its autophagy and oxidative stress pathway which were initially induced by neighboring tumor cells. Therefore, our data provided a novel possibility to develop fibroblasts as a potential target to treat CRC. 相似文献
4.
Ying Zhao Xue Li Mu-Yan Cai Ke Ma Jing Yang Jingyi Zhou Wan Fu Fu-Zheng Wei Lina Wang Dan Xie Wei-Guo Zhu 《Cell research》2013,23(4):491-507
Autophagy is activated to maintain cellular energy homeostasis in response to nutrient starvation. However, autophagy is not persistently activated, which is poorly understood at a mechanistic level. Here, we report that turnover of FoxO1 is involved in the dynamic autophagic process caused by glutamine starvation. X-box-binding protein-1u (XBP-1u) has a critical role in FoxO1 degradation by recruiting FoxO1 to the 20S proteasome. In addition, the phosphorylation of XBP-1u by extracellular regulated protein kinases1/2 (ERK1/2) on Ser61 and Ser176 was found to be critical for the increased interaction between XBP-1u and FoxO1 upon glutamine starvation. Furthermore, knockdown of XBP-1u caused the sustained level of FoxO1 and the persistent activation of autophagy, leading to a significant decrease in cell viability. Finally, the inverse correlation between XBP-1u and FoxO1 expression agrees well with the expression profiles observed in many human cancer tissues. Thus, our findings link the dynamic process of autophagy to XBP-1u-induced FoxO1 degradation. 相似文献
5.
6.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1960-1971
We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the “Reverse Warburg Effect”. In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the “Reverse Warburg Effect” or “Stromal-Epithelial Metabolic Coupling” in human breast cancers. 相似文献
7.
Autophagy,the pathway whereby cell components are degraded by lysosomes,is involved in the cell response to environmental stresses,such as nutrient deprivation,hypoxia or exposition to chemotherapeutic agents.Under these conditions,which are reminiscent of certain phases of tumor development,autophagy either promotes cell survival or induces cell death. This strengthens the possibility that autophagy could be an important target in cancer therapy,as has been proposed.Here,we describe the regulation of survival and death by autophagy and apoptosis,especially in cultured breast cancer cells.In particular,we discuss whether autophagy represents an apoptosis-independent process and/or if they share common pathways. We believe that understanding in detail the molecular mechanisms that underlie the relationships between autophagy and apoptosis in breast cancer cells could improve the available treatments for this disease. 相似文献
8.
9.
Hideki Tanaka Hirotsugu Hino Shota Moriya Hiromi Kazama Masaya Miyazaki Naoharu Takano Masaki Hiramoto Kiyoaki Tsukahara Keisuke Miyazawa 《Biochemistry and Biophysics Reports》2020
Tyrosine kinase inhibitors (TKIs) induce autophagy in many types of cancer cells. We previously reported that gefitinib (GEF) and imatinib (IMA) induce autophagy in epidermal growth factor receptor (EGFR) knock-out A549 and non-BCR-ABL-expressing leukemia cell lines, respectively. This evidence suggests that TKI-induced autophagy is independent of the original target molecules. The present study compared the autophagy-inducing abilities of various TKIs, regardless of their targets, by quantitative autophagy flux assay. We established stable clones expressing the GFP-LC3-mCherry-LC3ΔG plasmid in A549, PC-9, and CAL 27 cell lines and assessed autophagy inducibility by monitoring the fluorescent ratios of GFP-LC3 to mCherry-LC3ΔG using an IncuCyte live cell imaging system during exposure to TKIs viz; GEF, osimertinib (OSI), lapatinib (LAP), lenvatinib (LEN), sorafenib (SOR), IMA, dasatinib (DAS), and tivantinib (TIV). Among these TKIs, DAS, GEF, and SOR exhibited prominent autophagy induction in A549 and PC-9 cells. In CAL 27 cells, IMA, SOR, and LEN, but not GEF, TIV, or OSI, exhibited autophagy induction. In the presence of azithromycin (AZM), which showed an inhibitory effect on autophagy flux, TKIs with prominent autophagy inducibility exhibited enhanced cytotoxicity via non-apoptotic cell death relative to effects of TKI alone. Therefore, autophagy inducibility of TKIs differed in the context of cancer cells. However, once induced, they appeared to have cytoprotective functions. Thus, blocking TKI-induced autophagy with AZM may improve the therapeutic effect of TKIs in cancer cells. 相似文献
10.
11.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1421-1425
Resistance to multiple chemotherapeutic agents is a common clinical problem which can arise during cancer treatment. Drug resistance often involves overexpression of the multidrug resistance MDR1 gene, encoding P-glycoprotein (P-gp), a 170-kDa glycoprotein belonging to the ATP-binding cassette superfamily of membrane transporters. We have recently demonstrated apoptosis-induced, caspase-3-dependent P-gp cleavage in human T-lymphoblastoid CEM-R VBL100 cells. However, P-gp contain many aspartate residues which could be targeted by caspases other than caspase-3. To test whether other caspases could cleave P-gp in vivo, we investigated the fate of P-gp during roscovitine- and sangivamycin- induced apoptosis in MCF7 human breast cancer cells, as they lack functional caspase-3. MCF7 cells were stably transfected with human cDNA encoding P-gp. P-gp was cleaved in vitro by purified recombinant caspase-3, -6 and -7. However, P-gp cleavage was not detected in vivo in MCF7 cells induced to undergoing apoptosis by either roscovitine or sangivamycin, despite activation of both caspase-6 and -7. Interestingly, P-gp overexpressing MCF7 cells were more sensitive to either roscovitine or sangivamycin than wild-type cells, suggesting a novel potential therapeutic strategy against P-gp overexpressing cells. Taken together, our results support the concept that caspase-3 is the only caspase responsible for in vivo cleavage of P-gp and also highlight small molecules which could be effective in treating P-gp overexpressing cancers. 相似文献
12.
Aberrant sonic hedgehog (SHH)/glioma-associated oncogene (GLI) signaling has been shown in the development of many tumors. The aims of the present study are to determine the expression of two SHH signaling molecules, the glioma-associated oncogene homolog 1 (GLI1) and forkhead box C2 (FOXC2), in invasive breast cancers (IBC), to evaluate their association with clinicopathological parameters, and to determine their prognostic significance in breast cancer patients. Expression of GLI1 and FOXC2 were assessed by immunohistochemical analysis of a tissue microarray containing 262 unselected IBC cases. A statistical analysis was performed to assess the correlation of GLI1 and FOXC2 expression with the patients' clinicopathological parameters, postoperative survival rate, and molecular subtypes. Immunoreactivity of GLI1 and FOXC2 was observed in 84% and 75% of all breast cancer tissues, respectively. There was a significant correlation between nuclear FOXC2 and GLI1 expressions in these breast cancers, which was associated with estrogen receptor (ER) negativity. Furthermore, there was a significant association between nuclear expression of GLI1 and FOXC2 and a basal-like breast cancer phenotype. Patients with nuclear GLI1 or FOXC2-expressing tumors had a significantly shorter survival time than those without nuclear FOXC2 or GLI1 expression. Multivariate analysis showed that nuclear GLI1 or FOXC2 expression was an independent factor for predicting the prognosis of basal-like breast cancer. In conclusion, there was a significant correlation between expression of nuclear GLI1 or FOXC2 and human breast cancer. More specifically, elevated levels of these proteins were associated with the basal-like breast cancer phenotype and with a poor rate of disease-free survival. These data suggest that GLI1 and FOXC2 are involved in tumorigenesis and that they may be useful as diagnostic and therapeutic targets for human basal-like breast cancers. Additional studies are warranted to better understand the biological significance of GLI1 and FOXC2, to further refine statistics related to patient prognosis, and to optimize treatment of patients with basal-like breast cancer. 相似文献
13.
Pelin Ozfiliz-Kilbas Bahar Sarikaya Pinar Obakan-Yerlikaya Ajda Coker-Gurkan Elif Damla Arisan Benan Temizci Narcin Palavan-Unsal 《Molecular biology reports》2018,45(5):815-828
Roscovitine (Rosc) and purvalanol (Pur) are competitive inhibitors of cyclin-dependent kinases (CDKs) by targeting their ATP-binding pockets. Both drugs are shown to be effective to decrease cell viability and dysregulate the ratio of pro- and anti-apoptotic Bcl-2 family members, which finally led to apoptotic cell death in different cancer cell lines in vitro. It was well established that Bcl-2 family members have distinct roles in the regulation of other cellular processes such as endoplasmic reticulum (ER) stress. The induction of ER stress has been shown to play critical role in cell death/survival decision via autophagy or apoptosis. In this study, our aim was to investigate the molecular targets of CDK inhibitors on ER stress mechanism related to distinct cell death types in time-dependent manner in HeLa cervical cancer cells. Our results showed that Rosc and Pur decreased the cell viability, cell growth and colony formation, induced ER stress-mediated autophagy or apoptosis in time-dependent manner. Thus, we conclude that exposure of cells to CDK inhibitors induces unfolded protein response and ER stress leading to autophagy and apoptosis processes in HeLa cervical cancer cells. 相似文献
14.
Ohgawara T Kubota S Kawaki H Kurio N Abd El Kader T Hoshijima M Janune D Shimo T Perbal B Sasaki A Takigawa M 《Journal of cell communication and signaling》2011,5(4):291-299
The CCN family of proteins consists of six members with conserved structural features. These proteins play several roles in the physiology and pathology of cells. Among the pathological roles of the CCN family, one of the most important and controversial ones is their role in the expansion and metastasis of cancer. Up to now a number of reports have described the possible role of each CCN family member independently. In this study, we comprehensively analyzed the roles of all six CCN family members in cell growth, migration and invasion of breast cancer cells in vitro and in vivo. As a result, we found the CCN2/CCN3 ratio to be a parameter that is associated with the metastatic phenotype of breast cancer cells that are highly metastatic to the bone. The same analysis with cell lines from oral squamous carcinomas that are not metastatic to the bone further supported our notion. These results suggest the functional significance of the interplay between CCN family members in regulating the phenotype of cancer cells. 相似文献
15.
Ankita Sahu P. K. Patra Meena Varma 《Journal of receptor and signal transduction research》2017,37(5):470-480
The overexpression of ErbB4 is associated with aggressive disease biology and reduced the survival of breast cancer patients. We have used ErbB4 receptor as a novel drug target to spearhead the rational drug design. The present study is divided into two parts. In the first part, we have exploited the hidden information inside ErbB4 kinase receptor both at sequence and structural level. PSI-BLAST algorithm is used to search similar sequences against ErbB4 kinase sequence. Top 15 sequences with high identity were selected for finding conserved and variable regions among sequences using multiple sequence alignment. In the second part, available 3?D structure of ErbB4 kinase is curated using loop modeling, and anomalies in the modeled structure is improved by energy minimization. The resultant structure is validated by analyzing dihedral angles by Ramachandran plot analysis. Furthermore, the potential binding sites were detected by using DoGSite and CASTp server. The similarity-search criterion is used for the preparation of our in-house database of drugs from DrugBank database. In total, 409 drugs yet to be tested against ErbB4 kinase is used for screening purpose. Virtual screening results in identification of 11 compounds with better binding affinity than lapatinib and canertinib. Study of protein–ligand interactions reveals information about amino acid residues; Lys726, Thr771, Met774, Cys778, Arg822, Thr835, Asp836 and Phe837 at the binding pocket. The physicochemical properties and bioactivity score calculation of selected compounds suggest them as biological active. This study presents a rich array that assist in expediting new drug discovery for breast cancer. 相似文献
16.
Russo D Ottaggio L Penna I Foggetti G Fronza G Inga A Menichini P 《Biochemical and biophysical research communications》2010,402(2):345-350
PRIMA-1 has been identified as a compound that restores the transactivation function to mutant p53 and induces apoptosis in cells expressing mutant p53. Studies on subcellular distribution of the mutant p53 protein upon treatment with PRIMA-1Met, a methylated form of PRIMA-1, have suggested that redistribution of mutant p53 to nucleoli may play a role in PRIMA-1 induced apoptosis. Here, we specifically investigated the influence of PRIMA-1 on cellular localization of mutated p53-R280K endogenously expressed in tumour cells. By using immunofluorescence staining, we found a strong nucleolar redistribution of mutant p53 following PRIMA-1 treatment. This subcellular localization was associated to p53 degradation via ubiquitylation. When cells were treated with adriamycin, neither nucleolar redistribution nor mutant p53 down modulation and degradation were observed. Interestingly, cells where p53-R280K was silenced were more sensitive to PRIMA-1 than the parental ones. These results indicate that in some cellular context, the cell sensitivity to PRIMA-1 could depend on the abolition of a gain-of-function activity of the mutated p53, through a protein degradation pathway specifically induced by this compound. 相似文献
17.
Ramia Mokbel Isabella Karat Kefah Mokbel 《International Seminars in Surgical Oncology : ISSO》2006,3(1):31
There is overwhelming evidence that optimal adjuvant endocrine therapy for hormone sensitive breast cancer in postmenopausal women should include a third generation aromatase inhibitor (AI). On current evidence, adjuvant anstrozole or letrozole should be used upfront in such patients especially in those with high risk disease (node positive and/or tumours > 2 cm). The sequential approach of tamoxifen for 2–3 years followed by exemestane or anastrozole for 2–3 years is a reasonable alternative to 5 years of AI monotherapy in patients with low risk disease (node negative and tumour smaller than 2 cm) especially if the tumour is positive for estrogen and progesterone receptors.Node-positive patients completing 5 years of adjuvant tamoxifen should be offered letrozole for up 48 months. Further research is required to establish the long-term cardiovascular safety of AIs especially that of letrozole and exmestane, the optimal AI to use, duration of AI therapy and whether monotherapy with an AI for 5 years is superior to sequencing an AI after 2–3 years of tamoxifen.The bone mineral density (BMD) should be measured at baseline and monitored during therapy in women being treated with AIs. Anti-osteoporosis agents should such as bisphosphonates should be considered in patients at high risk of bone fractures. 相似文献
18.
Raza Masoom Kumar Naveen Nair Uttara Luthra Gehna Bhattacharyya Ushosi Jayasundar Smruthi Jayasundar Rama Sehrawat Seema 《Molecular and cellular biochemistry》2021,476(9):3271-3284
Molecular and Cellular Biochemistry - Cancer therapies have undergone a tremendous progress over the past decade. Precision medicine provides a more tailored approach, making the combination of... 相似文献
19.
Beshay N.M. Zordoky Diana BarkCarrie L. Soltys Miranda M. SungJason R.B. Dyck 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Metformin has been shown to have a strong anti-proliferative effect in many breast cancer cell lines, mainly due to the activation of the energy sensing kinase, AMP-activated protein kinase (AMPK). MDA-MB-231 cells are aggressive and invasive breast cancer cells that are known to be resistant to several anti-cancer agents as well as to the anti-proliferative effect of metformin. As metformin is a glucose lowering drug, we hypothesized that normoglycemia will sensitize MDA-MB-231 cells to the anti-proliferative effect of metformin.Methods
MDA-MB-231 cells were treated with increasing metformin concentrations in hyperglycemic or normoglycemic conditions. The growth inhibitory effect of metformin was assessed by MTT assay. The expression of several proteins involved in cell proliferation was measured by Western blotting.Results
In agreement with previous studies, treatment with metformin did not inhibit the growth of MDA-MB-231 cells cultured in hyperglycemic conditions. However, metformin significantly inhibited MDA-MB-231 growth when the cells were cultured in normoglycemic conditions. In addition, we show that metformin-treatment of MDA-MB-231 cells cultured in normoglycemic conditions and not in hyperglycemic conditions caused a striking activation of AMPK, and an AMPK-dependent inhibition of multiple molecular signaling pathways known to control protein synthesis and cell proliferation.Conclusion
Our data show that normoglycemia sensitizes the triple negative MDA-MB-231 breast cancer cells to the anti-proliferative effect of metformin through an AMPK-dependent mechanism.General significance
These findings suggest that tight normoglycemic control may enhance the anti-proliferative effect of metformin in diabetic cancer patients. 相似文献20.
Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells 总被引:1,自引:1,他引:1
Reineke EL Lam M Liu Q Liu Y Stanya KJ Chang KS Means AR Kao HY 《Molecular and cellular biology》2008,28(3):997-1006
Promyelocytic leukemia protein (PML) is an important regulator due to its role in numerous cellular processes including apoptosis, viral infection, senescence, DNA damage repair, and cell cycle regulation. Despite the role of PML in many cellular functions, little is known about the regulation of PML itself. We show that PML stability is regulated through interaction with the peptidyl-prolyl cis-trans isomerase Pin1. This interaction is mediated through four serine-proline motifs in the C terminus of PML. Binding to Pin1 results in degradation of PML in a phosphorylation-dependent manner. Furthermore, our data indicate that sumoylation of PML blocks the interaction, thus preventing degradation of PML by this pathway. Functionally, we show that in the MDA-MB-231 breast cancer cell line modulating levels of Pin1 affects steady-state levels of PML. Furthermore, degradation of PML due to Pin1 acts both to protect these cells from hydrogen peroxide-induced death and to increase the rate of proliferation. Taken together, our work defines a novel mechanism by which sumoylation of PML prevents Pin1-dependent degradation. This interaction likely occurs in numerous cell lines and may be a pathway for oncogenic transformation. 相似文献