首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
p53 tumor suppressor has been identified as a protein interacting with the large T antigen produced by simian vacuolating virus 40 (SV40). Subsequent research on p53 inhibition by SV40 and other tumor viruses has not only helped to gain a better understanding of viral biology, but also shaped our knowledge of human tumorigenesis. Recent studies have found, however, that inhibition of p53 is not strictly in the realm of viruses. Some bacterial pathogens also actively inhibit p53 protein and induce its degradation, resulting in alteration of cellular stress responses. This phenomenon was initially characterized in gastric epithelial cells infected with Helicobacter pylori, a bacterial pathogen that commonly infects the human stomach and is strongly linked to gastric cancer. Besides H. pylori, a number of other bacterial species were recently discovered to inhibit p53. These findings provide novel insights into host–bacteria interactions and tumorigenesis associated with bacterial infections.  相似文献   

5.
6.
韩贤贤 《生命的化学》2006,26(6):518-521
ARF蛋白是INK4a基因位点编码产物之一,是一种重要的肿瘤抑制因子。ARF可结合原癌蛋白Mdm2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡。有关ARF的p53依赖性作用已有较多报道。该文主要以ARF对E2F1、DP1、E2F1/DP1、NPM/B23和c-Myc等的调控为例,对ARF的非p53调节通路做一综述。  相似文献   

7.
8.
9.
Ras association domain family (RASSF) 6 is a member of the C-terminal RASSF proteins such as RASSF1A and RASSF3. RASSF6 is involved in apoptosis in various cells under miscellaneous conditions, but it remains to be clarified how RASSF6 exerts tumor-suppressive roles. We reported previously that RASSF3 facilitates the degradation of MDM2, a major E3 ligase of p53, and stabilizes p53 to function as a tumor suppressor. In this study, we demonstrate that RASSF6 overexpression induces G1/S arrest in p53-positive cells. Its depletion prevents UV- and VP-16-induced apoptosis and G1/S arrest in HCT116 and U2OS cells. RASSF6-induced apoptosis partially depends on p53. RASSF6 binds MDM2 and facilitates its ubiquitination. RASSF6 depletion blocks the increase of p53 in response to UV exposure and up-regulation of p53 target genes. RASSF6 depletion delays DNA repair in UV- and VP-16-treated cells and increases polyploid cells after VP-16 treatment. These findings indicate that RASSF6 stabilizes p53, regulates apoptosis and the cell cycle, and functions as a tumor suppressor. Together with the previous reports regarding RASSF1A and RASSF3, the stabilization of p53 may be the common function of the C-terminal RASSF proteins.  相似文献   

10.
p53是细胞内最重要的抑癌蛋白质之一;细胞对p53分子功能的调控主要通过一系列翻译后修饰(PTMs)完成。其中,乙酰化修饰既可在总体水平调控p53的转录活性,又可位点特异性地调控p53依赖的转录选择性,进而精确控制p53在细胞周期阻滞、凋亡、衰老、自噬和代谢等关键生物学过程中的作用。本综述以p53乙酰化修饰研究的时间脉络为轴,首先总结了发生在p53各结构域内乙酰化修饰的建立机制,包括催化p53位点特异性乙酰化发生的乙酰基转移酶,以及各位点乙酰化修饰对p53分子功能调节的机制。其次,本综述总结了参与去除p53乙酰化修饰的关键去乙酰基酶家族,以及这些因子参与调控p53分子功能的生物学意义。同时,本文综述了能够特异性读取p53乙酰化修饰状态的识别蛋白质,以及这些识别蛋白质与p53互作,进而协同调控下游靶基因转录的分子调控网络。此外,本文概述了p53乙酰化修饰与其它类型翻译后修饰之间的“交谈”,以及这些修饰之间通过时空特异互作方式影响p53功能的分子机制。最后,本文基于p53乙酰化修饰,对肿瘤分子医学的研究前景进行讨论与展望。  相似文献   

11.
The ubiquitin-mediated degradation of hypoxia-inducible factor-α (HIF-α) by a von Hippel-Lindau tumor suppressor protein (pVHL) is mechanistically responsible for controlling gene expression due to oxygen availability. Germline mutations in the VHL gene cause dysregulation of HIF and induce an autosomal dominant cancer syndrome referred to as VHL disease. However, it is unclear whether HIF accumulation caused by VHL mutations is sufficient for tumorigenesis. Recently, we found that pVHL directly associates and positively regulates the tumor suppressor p53 by inhibiting Mdm2-mediated ubiquitination, and by subsequently recruiting p53-modifying enzymes. Moreover, VHL-deleted RCC cells showed attenuated apoptosis or abnormal cell-cycle arrest upon DNA damage, but became normal when pVHL was restored. Thus, pVHL appears to play a pivotal role in tumor suppression by participating actively as a component of p53 transactivation complex during DNA damage response.  相似文献   

12.
Alterations in the homeostasis of the endoplasmic reticulum (ER) by various forms of stress can lead to the accumulation of unfolded proteins and protein aggregates that are detrimental to cell survival. Eukaryotic cells can adapt to ER stress by activating specific signalling pathways and mechanisms, whose primary purpose is to limit the accumulation of unfolded proteins in the ER. We recently reported a novel mechanism of cell adaptation to ER stress, which proceeds through the inhibition of the apoptotic function of the tumour suppressor p53 [Genes & Development 2004;18:261-277]. We found that ER stress increases the cytoplasmic localization and enhances the destabilization of the tumour suppressor. This process requires the phosphorylation of p53 at serine 315 and serine 376, which is mediated by the activation of glycogen synthase kinase-3beta (GSK-3?). ER stress also prevents p53 activation and p53-mediated apoptosis in response to DNA damage. These findings demonstrate that ER stress utilizes mechanisms that are distinct from other types of stress to modulate p53. In addition, they reveal that ER stress and nuclear DNA damage can induce inter-organellar cross-talk pathways targeting p53 with important implications for the treatment of tumours with dysfunctional ER.  相似文献   

13.
14.
15.
16.
17.
肿瘤抑制因子p53功能及其抗病毒作用研究进展   总被引:1,自引:0,他引:1  
肿瘤抑制因子p53 作为基因组的守护者,能通过细胞周期调控和促进细胞凋亡而阻止癌细胞及机体肿瘤的发生,p53还能参与DNA损伤修复、调节机体代谢及调节繁殖生育等功能。除此以外,近年来研究发现,p53能通过促进病毒感染的细胞凋亡而起到抗病毒作用以及p53受IFN的调控和p53作为转录调控因子还能直接转录激活IRF9、IRF5、ISG15和TLR3等抗病毒基因,从而确定了p53在抗病毒反应中起到重要作用。这表明p53可能参与先天性免疫、获得性免疫及炎症反应而起到抗病毒的作用。  相似文献   

18.
《Cell reports》2014,6(2):271-277
  1. Download : Download high-res image (317KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号