首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
K Lv  L Liu  L Wang  J Yu  X Liu  Y Cheng  M Dong  R Teng  L Wu  P Fu  W Deng  W Hu  L Teng 《PloS one》2012,7(7):e40008
Resistance to chemotherapy is a major obstacle for the effective treatment of cancers. Lin28 has been shown to contribute to tumor relapse after chemotherapy; however, the relationship between Lin28 and chemoresistance remained unknown. In this study, we investigated the association of Lin28 with paclitaxel resistance and identified the underlying mechanisms of action of Lin28 in human breast cancer cell lines and tumor tissues. We found that the expression level of Lin28 was closely associated with the resistance to paclitaxel treatment. The T47D cancer cell line, which highly expresses Lin28, is more resistant to paclitaxel than the MCF7, Bcap-37 or SK-BR-3 cancer cell lines, which had low-level expression of Lin28. Knocking down of Lin28 in Lin28 high expression T47D cells increased the sensitivity to paclitaxel treatment, while stable expression of Lin28 in breast cancer cells effectively attenuated the sensitivity to paclitaxel treatment, resulting in a significant increase of IC50 values of paclitaxel. Transfection with Lin28 also significantly inhibited paclitaxel-induced apoptosis. We also found that Lin28 expression was dramatically increased in tumor tissues after neoadjuvant chemotherapy or in local relapse or metastatic breast cancer tissues. Moreover, further studies showed that p21, Rb and Let-7 miRNA were the molecular targets of Lin28. Overexpression of Lin28 in breast cancer cells considerably induced p21 and Rb expression and inhibited Let-7 miRNA levels. Our results indicate that Lin28 expression might be one mechanism underlying paclitaxel resistance in breast cancer, and Lin28 could be a potential target for overcoming paclitaxel resistance in breast cancer.  相似文献   

2.
NSCLC (non-small cell lung cancer) often exhibits resistance to paclitaxel treatment. Identifying the elements regulating paclitaxel response will advance efforts to overcome such resistance in NSCLC therapy. Using in vitro approaches, we demonstrated that over-expression of the microRNA miR-337-3p sensitizes NCI-H1155 cells to paclitaxel, and that miR-337-3p mimic has a general effect on paclitaxel response in NSCLC cell lines, which may provide a novel adjuvant strategy to paclitaxel in the treatment of lung cancer. By combining in vitro and in silico approaches, we identified STAT3 and RAP1A as direct targets that mediate the effect of miR-337-3p on paclitaxel sensitivity. Further investigation showed that miR-337-3p mimic also sensitizes cells to docetaxel, another member of the taxane family, and that STAT3 levels are significantly correlated with taxane resistance in lung cancer cell lines, suggesting that endogenous STAT3 expression is a determinant of intrinsic taxane resistance in lung cancer. The identification of a miR-337-3p as a modulator of cellular response to taxanes, and STAT3 and RAP1A as regulatory targets which mediate that response, defines a novel regulatory pathway modulating paclitaxel sensitivity in lung cancer cells, which may provide novel adjuvant strategies along with paclitaxel in the treatment of lung cancer and may also provide biomarkers for predicting paclitaxel response in NSCLC.  相似文献   

3.
Drug resistance remains a major problem in combating malignancies, resulting critical the resistance to paclitaxel used in the treatment of many different cancers. Elucidating the cellular heterogeneity composition of tumours may be relevant to designing more effective treatment strategies on drug resistance. In particular, such heterogeneity correlates with the measurement of gene expression below the population level. However, experimental assays capturing differential response are limited and cannot discern the variation in gene expression specific to different cellular types in tumour populations. These limitations led us to consider a mathematical modelling approach, in which the gene expression of cellular subpopulations is recovered by deconvolution. Mathematically, the deconvolution is a multi-linear regression-based problem. We combined herein data on cellular subpopulation frequency composition with gene expression values from 16 tumour lines (8 resistant and 8 sensitive to paclitaxel treatment) to find genes that are differentially expressed between paclitaxel resistant and paclitaxel sensitive tumour lines in different cellular subpopulations. The results indicate that many genes differentially expressed between paclitaxel resistant and sensitive cancer lines are only detected when considering their heterogeneous cellular composition. Overall, our methodology is thought to keep in mind phenotypic heterogeneity improving our resolution in the identification of biomarkers on resistance to chemo-therapeutic agents.  相似文献   

4.
5.
RACK1 is a 7-WD motif-containing protein with numerous downstream effectors regulating various cellular functions. Using a yeast two-hybrid screen, we identified dynein light chain 1 as a novel interacting partner of RACK1. Additionally, we demonstrated that RACK1 formed a complex with DLC1 and Bim, specifically BimEL, in the presence of apoptotic agents. Upon paclitaxel treatment, RACK1, DLC1, and CIS mediated the degradation of BimEL through the ElonginB/C-Cullin2-CIS ubiquitin-protein isopeptide ligase complex. We further showed that RACK1 conferred paclitaxel resistance to breast cancer cells in vitro and in vivo. Finally, we observed an inverse correlation between CIS and BimEL levels in both ovarian and breast cancer cell lines and specimens. Our study suggests a role of RACK1 in protecting cancer cells from apoptosis by regulating the degradation of BimEL, which together with CIS could play an important role of drug resistance in chemotherapy.  相似文献   

6.
Paclitaxel is a microtubule-targeting agent widely used for the treatment of many solid tumors. However, patients show variable sensitivity to this drug, and effective diagnostic tests predicting drug sensitivity remain to be investigated. Herein, we show that the expression of end-binding protein 1 (EB1), a regulator of microtubule dynamics involved in multiple cellular activities, in breast tumor tissues correlates with the pathological response of tumors to paclitaxel-based chemotherapy. In vitro cell proliferation assays reveal that EB1 stimulates paclitaxel sensitivity in breast cancer cell lines. Our data further demonstrate that EB1 increases the activity of paclitaxel to cause mitotic arrest and apoptosis in cancer cells. In addition, microtubule binding affinity analysis and polymerization/depolymerization assays show that EB1 enhances paclitaxel binding to microtubules and stimulates the ability of paclitaxel to promote microtubule assembly and stabilization. These findings thus reveal EB1 as a critical regulator of paclitaxel sensitivity and have important implications in breast cancer chemotherapy.  相似文献   

7.
The integrated stress response (ISR) is critical for cancer cell survival during stress stimuli and has been implicated in the resistance to cancer therapeutics, in which the mechanism, however, is poorly understood. Here, we showed that paclitaxel, the major chemotherapy drug for breast cancer, induced ISR and phosphorylated ser51 residue of EIF2S1 by EIF2AK3 and EIF2AK4. When exposed to paclitaxel, cancer cells activated the EIF2AK3/EIF2AK4‐pEIF2S1‐ATF4 axis and maintained redox homoeostasis by inducing expression of the major antioxidant enzymes HMOX1, SHMT2 and SLC7A11. Paclitaxel‐mediated cell death was significantly increased following loss of ISR or ATF4 expression. This sensitizing effect could be partially rescued by Trolox, a ROS scavenger. We demonstrated that the alternative initiation factor EIF2A was essential for cancer cell survival after paclitaxel‐mediated ISR both in vitro and in vivo. Moreover, patients with breast cancer exhibited higher ISR after chemotherapy, and the elevated mRNA levels of HMOX1, SHMT2 and EIF2A were correlated with poor prognosis. Collectively, our findings reveal a novel mechanism for paclitaxel resistance and suggest that targeting EIF2A combined with ISR agonist may be a potential treatment regimen to overcome drug resistance for breast cancer.  相似文献   

8.
The chemotherapeutic drug, paclitaxel, induces mitotic arrest and then activates the cellular apoptotic program. Although paclitaxel has been in clinical use for over 10 years for the treatment of breast, ovarian, and lung cancer, the molecular mechanisms of paclitaxel-induced cytotoxicity are ill defined. We decided to investigate the regulatory mechanism of the pro-apoptotic BH3-only protein Bim, which is known to play a role in paclitaxel cytotoxicity. We discovered that paclitaxel induces reversible phosphorylation of Bim. Bim initially displays enhanced phosphorylation during paclitaxel-induced mitotic arrest, and then undergoes de-phosphorylation as cells become apoptotic. This dynamic phosphorylation is dependent on mitotic checkpoint signaling. However, while these results suggest that reversible phosphorylation of Bim may contribute to the transmission of a mitotic checkpoint-to-apoptosis signal, we did not observe a strong correlation between Bim protein levels and cellular sensitivity to paclitaxel. Indeed, in contrast to the well-defined role of Bim in paclitaxel-induced cell death in mouse model cells, our depletion studies demonstrate that Bim is not absolutely required for paclitaxel cytotoxicity in breast cancer cell lines. Clearly it is imperative to define the contribution of Bim in paclitaxel-induced apoptosis of clinically relevant targets in order to rationally develop enhanced treatment strategies.  相似文献   

9.
Breast cancer patients have different responses to chemotherapeutic treatments. Genes associated with drug response can provide insight to understand the mechanisms of drug resistance, identify promising therapeutic opportunities, and facilitate personalized treatment. Estrogen receptor (ER) positive and ER negative breast cancer have distinct clinical behavior and molecular properties. However, to date, few studies have rigorously assessed drug response genes in them. In this study, our goal was to systematically identify genes associated with multidrug response in ER positive and ER negative breast cancer cell lines. We tested 27 human breast cell lines for response to seven chemotherapeutic agents (cyclophosphamide, docetaxel, doxorubicin, epirubicin, fluorouracil, gemcitabine, and paclitaxel). We integrated publicly available gene expression profiles of these cell lines with their in vitro drug response patterns, then applied meta-analysis to identify genes related to multidrug response in ER positive and ER negative cells separately. One hundred eighty-eight genes were identified as related to multidrug response in ER positive and 32 genes in ER negative breast cell lines. Of these, only three genes (DBI, TOP2A, and PMVK) were common to both cell types. TOP2A was positively associated with drug response, and DBI was negatively associated with drug response. Interestingly, PMVK was positively associated with drug response in ER positive cells and negatively in ER negative cells. Functional analysis showed that while cell cycle affects drug response in both ER positive and negative cells, most biological processes that are involved in drug response are distinct. A number of signaling pathways that are uniquely enriched in ER positive cells have complex cross talk with ER signaling, while in ER negative cells, enriched pathways are related to metabolic functions. Taken together, our analysis indicates that distinct mechanisms are involved in multidrug response in ER positive and ER negative breast cells.  相似文献   

10.
A significant variation in susceptibility to paclitaxel-mediated killing was observed among a panel of short-term cultured non-small-cell lung cancer (NSCLC) cell lines. Susceptibility to killing by paclitaxel correlated with expression of the BH3-only protein, Bim, but not with other members of Bcl-2 family. NSCLC cell lines with the highest level of Bim expression are most susceptible to apoptosis induction after paclitaxel treatment. Forced expression of Bim increased paclitaxel-mediated killing of cells expressing an undetectable level of Bim. Conversely, knock down of Bim, but not Bcl-2 expression, decreased the susceptibility of tumor cells to paclitaxel-mediated killing. Similar observations were made using a panel of breast and prostate cancer cell lines. Paclitaxel impairs microtubule function, causes G2/M cell cycle blockade, mitochondria damage, and p53-independent apoptosis. These results established Bim as a critical molecular link between the microtubule poison, paclitaxel, and apoptosis.  相似文献   

11.
Emerging evidence has indicated the important function of long non‐coding RNAs (lncRNAs) in tumour chemotherapy resistance. However, the underlying mechanism is still ambiguous. In this study, we investigate the physiopathologic role of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) on the paclitaxel (PTX) resistance in breast cancer. Results showed that lncRNA FTH1P3 was up‐regulated in paclitaxel‐resistant breast cancer tissue and cells (MCF‐7/PTX and MDA‐MB‐231/PTX cells) compared with paclitaxel‐sensitive tissue and parental cell lines (MCF‐7, MDA‐MB‐231). Gain‐ and loss‐of‐function experiments revealed that FTH1P3 silencing decreased the 50% inhibitory concentration (IC50) value of paclitaxel and induced cell cycle arrest at G2/M phase, while FTH1P3‐enhanced expression exerted the opposite effects. In vivo, xenograft mice assay showed that FTH1P3 silencing suppressed the tumour growth of paclitaxel‐resistant breast cancer cells and ABCB1 protein expression. Bioinformatics tools and luciferase reporter assay validated that FTH1P3 promoted ABCB1 protein expression through targeting miR‐206, acting as a miRNA “sponge.” In summary, our results reveal the potential regulatory mechanism of FTH1P3 on breast cancer paclitaxel resistance through miR‐206/ABCB1, providing a novel insight for the breast cancer chemoresistance.  相似文献   

12.
Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ~30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI-resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt- and mitogen-activated protein kinase in an EGFR TKI-sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI-resistant cell lines, however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.  相似文献   

13.
The microenvironment is central to many aspects of cancer pathobiology and has been proposed to play a role in the development of cancer cell resistance to therapy. To examine the response to microenvironmental conditions, two paclitaxel resistant prostate cancer (PCa) cell lines (stable and reversible) and one reversible heat resistant cell line were studied. In comparison to their parental cell lines, both paclitaxel resistant cell lines (stable and reversible) were more sensitive to microenvironmental heat, potentially yielding a synergistic therapeutic opportunity. In the two phenotypic cells repopulated after acute heat or paclitaxel treatments, there was an inverse correlation between paclitaxel and heat resistance: resistance to paclitaxel imparted sensitivity to heat; resistance to heat imparted sensitivity to paclitaxel. These studies indicate that as cancer cells evolve resistance to single microenvironmental stress they may be more sensitive to others, perhaps allowing us to design new approaches for PCa therapy.  相似文献   

14.
Lai  Hongna  Wang  Rui  Li  Shunying  Shi  Qianfeng  Cai  Zijie  Li  Yudong  Liu  Yujie 《中国科学:生命科学英文版》2020,63(3):419-428
LIN9 functions to regulate cell mitotic process.Dysregulation of LIN9 expression is associated with development of human cancers.In this study we assessed the association of LIN9 expression with paclitaxel resistance and clarified the underlying mechanisms for the first time.LIN9 expression in breast cancer tissues was retrieved from publicly available online databases and statistically analyzed.Human TNBC cell lines MDA-MB-231 and MDA-MB-468 and their corresponding paclitaxelresistant sublines 231PTX and 468PTX were used to assess the expression of LIN9 by qRT-PCR and Western blot,cell growth by cell counting,cell viability by MTS assay,and cell apoptosis by flow cytometry.The data showed that high LIN9 expression in breast cancer patients receiving chemotherapy was related to poor overall survival (OS).LIN9 expression was upregulated in paclitaxel-resistant TNBC cells compared to their parental cells.Knockdown of LIN9 or treatment of paclitaxel-resistant TNBC cells with a bromo-and extra-terminal domain inhibitor (BETi) JQ1 which also decreased LIN9 expression enhanced the sensitivity of paclitaxel-resistant TNBC cells to paclitaxel.Mechanistically,decreased LIN9 in resistant cell lines reduced tumor cell viability,promoted multinucleated cells formation and induced tumor cell apoptosis,potentially by directly regulating microtubule-binding protein CCSAP.In conclusion,high LIN9 expression contributed to poor clinical outcomes and paclitaxel resistance in TNBC and BETi,targeting LIN9 expression,could be a reversible drug for PTX-resistant TNBC patients.  相似文献   

15.
The anti-diabetic drug metformin reduces human cancer incidence and improves the survival of cancer patients, including those with breast cancer. We studied the activity of metformin against diverse molecular subtypes of breast cancer cell lines in vitro. Metformin showed biological activity against all estrogen receptor (ER) positive and negative, erbB2 normal and abnormal breast cancer cell lines tested. It inhibited cellular proliferation, reduced colony formation and caused partial cell cycle arrest at the G1 checkpoint. Metformin did not induce apoptosis (as measured by DNA fragmentation and PARP cleavage) in luminal A, B or erbB2 subtype breast cancer cell lines. At the molecular level, metformin treatment was associated with a reduction of cyclin D1 and E2F1 expression with no changes in p27kip1 or p21waf1. It inhibited mitogen activated protein kinase (MAPK) and Akt activity, as well as the mammalian target of rapamycin (mTOR) in both ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells. In erbB2-overexpressing breast cancer cell lines, metformin reduced erbB2 expression at higher concentrations, and at lower concentrations within the therapeutic range, it inhibited erbB2 tyrosine kinase activity evidenced by a reduction of phosphorylated erbB2 (P-erbB2) at both auto- and Src- phosphorylation sites. These data suggest that metformin may have potential therapeutic utility against ER positive and negative, erbB2-overexpressing and erbB2-normal expressing breast cancer cells.  相似文献   

16.
Chemotherapy employing paclitaxel and docetaxel is widely used for treating early‐stage breast cancer and metastasis, which is frequently associated with overexpression of epidermal growth factor receptor (EGFR) and resistance to apoptosis. ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR, inhibits cell proliferation of solid tumors, including breast. Phase III clinical trials using ZD6474 in non‐small cell lung carcinoma when combined with standard chemotherapy appear promising. In order to improve the antineoplastic activity of paclitaxel, we presently investigated the effects of ZD6474 in combination with paclitaxel in EGFR and VEGFR expressing human breast cancer cell lines MCF‐7 and MDA‐MB‐231. ZD6474 synergistically decreased cell viability when used in combination with paclitaxel. ZD6474 inhibited cyclin D1 and cyclin E expression and induced p53 expression when combined with paclitaxel. The combination of ZD6474 with paclitaxel versus either agent alone also more potently down‐regulated the antiapoptotic bcl‐2 protein, up‐regulated pro‐apoptotic signaling events involving expression of bax, activation of caspase‐3 and caspase‐7 proteins, and induced poly(ADP‐ribose) polymerase resulting in apoptosis. ZD6474 combined with paclitaxel inhibited anchorage‐independent colony formation and invasion of breast cancer cells in vitro as compared to either single agent, indicating a potential involvement of altered expression and reorganization of cytoskeletal proteins in combinatorial treated breast cancer cells. Collectively, our studies indicate that incorporating an anti‐EGFR plus VEGFR strategy (ZD6474) with chemotherapy (paclitaxel), where clinical studies of dose‐intensive paclitaxel therapy are currently in progress, may be more effective in treating patients with locally advanced or metastatic breast cancer than either approach alone. J. Cell. Physiol. 226: 375–384, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
目的观察透明质酸的新存在形式——条索状透明质酸在乳腺肿瘤细胞BT549表面的表达情况,探索该结构在BT549细胞耐受紫杉醇杀伤中的作用。方法采用免疫细胞荧光技术观察BT549细胞表面条索状透明质酸的分布情况;分别用流式细胞术和RT—PCR检测透明质酸的条索状结构被破坏前后,紫杉醇诱导的肿瘤细胞凋亡、坏死率的改变以及凋亡相关基因c-junmRNA表达的改变。结果BT549细胞天然表达大量的条索状透明质酸,条索状结构被破坏后,紫杉醇诱导BT549细胞的凋亡和坏死率显著增高(P〈0.05),凋亡基因c扣n的表达水平也显著增高(P〈0.05)。结论乳腺肿瘤细胞BT-549高表达条索状结构的透明质酸,这种透明质酸的新存在形式可能在BT549细胞耐受紫杉醇的杀伤过程中起到一定的保护作用。  相似文献   

18.
Chemotherapy resistance is a major obstacle to achieving durable progression-free-survival in breast cancer patients. Identifying resistance mechanisms is crucial to the development of effective breast cancer therapies. Immediate early genes (IEGs) function in the initial cellular reprogramming response to alterations in the extracellular environment and IEGs have been implicated in cancer cell development and progression. The purpose of this study was to investigate the influence of kinase inhibitors on IEG expression in breast cancer cells. The results demonstrated that Flavopiridol (FP), a CDK9 inhibitor, effectively reduced gene expression. FP treatment, however, consistently produced a delayed induction of JUNB gene expression in multiple breast cancer cell lines. Similar results were obtained with Sorafenib, a multi-kinase inhibitor and U0126, a MEK1 inhibitor. Functional studies revealed that JUNB plays a pro-survival role in kinase inhibitor treated breast cancer cells. These results demonstrate a unique induction of JUNB in response to kinase inhibitor therapies that may be among the earliest events in the progression to treatment resistance.  相似文献   

19.
Serine 70 in the loop region of Bcl-2 is specifically phosphorylated by paclitaxel-treatment in tumor cells and BHK cells expressing Bcl-2. The phosphorylation of serine 70 of Bcl-2 (pS70-Bcl-2) peaks 24 to 48 h after paclitaxel treatment and accelerates apoptosis. Phosphorylation is effectively inhibited in the presence of actinomycin D or cycloheximide, which restore cell viability to the same level as control cells not expressing Bcl-2. These results indicate that paclitaxel-induced kinase(s) and/or its activator(s) are synthesized de novo and play an important role in paclitaxel-induced apoptosis by phosphorylating Bcl-2. In binding assays using the phosphorylation-specific antibody against pS70-Bcl-2, the induction of serine 70 phosphorylation 70 results in a loss of the binding ability of Bcl-2 to Bax, a pro-apoptotic partner, and induces subsequent cell death. When the pS70-Bcl-2 antibody was added to human breast cancer tissue, serine 70 phosphorylation was also detected, even prior to treatment with anticancer agents. Further study of breast cancers revealed 83% of tumors with high pS70-Bcl-2 expression responded to paclitaxel or docetaxel treatment, whereas 57% of those with low expression not respond. These findings suggest that pS70-Bcl-2 might be a predictive factor for prognosis and sensitivity to paclitaxel treatment for breast cancer.  相似文献   

20.
BRCA1 germline mutations predispose women to early onset, familial breast and ovariancancer. BRCA1 has been recently implicated in the cellular response to agents that disruptthe mitotic spindle. In this report, we studied BRCA1 contribution to paclitaxel response inMCF-7 breast cancer cells. We show that MCF-7 cells transfected with BRCA1 siRNAdisplay a significant increase in resistance to paclitaxel compared with the control cells. Wenext demonstrate that down-regulation of BRCA1 reduces the mitotic index and triggerspremature cyclin B1 degradation and decrease in Cdk1 activity following paclitaxel treatment,suggesting that BRCA1 down-regulation results in precocious inactivation of the spindlecheckpoint. These findings were confirmed by showing that BRCA1 down-regulation inducespremature sister–chromatids separation in MCF-7 cells following spindle damage.Furthermore, we show that BRCA1 up-regulates the expression of the protein kinase BubR1,essential component of the functional spindle checkpoint, whose down-regulation is known toresult in paclitaxel resistance in MCF-7 cells. Altogether, our findings support the notion thatdown-regulation of BRCA1 expression mediates paclitaxel resistance through prematureinactivation of spindle checkpoint in MCF-7 breast cancer cells. They link BRCA1 to themitotic checkpoint that plays an essential role in the maintenance of chromosomal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号