首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The CDKN2A/ARF locus encompasses overlapping tumor suppressor genes p16(INK4A) and p14(ARF), which are frequently co-deleted in human malignant mesothelioma (MM). The importance of p16(INK4A) loss in human cancer is well established, but the relative significance of p14(ARF) loss has been debated. The tumor predisposition of mice singly deficient for either Ink4a or Arf, due to targeting of exons 1α or 1β, respectively, supports the idea that both play significant and nonredundant roles in suppressing spontaneous tumors. To further test this notion, we exposed Ink4a(+/-) and Arf(+/-) mice to asbestos, the major cause of MM. Asbestos-treated Ink4a(+/-) and Arf(+/-) mice showed increased incidence and shorter latency of MM relative to wild-type littermates. MMs from Ink4a(+/-) mice exhibited biallelic inactivation of Ink4a, loss of Arf or p53 expression and frequent loss of p15(Ink4b). In contrast, MMs from Arf(+/-) mice exhibited loss of Arf expression, but did not require loss of Ink4a or Ink4b. Mice doubly deficient for Ink4a and Arf, due to deletion of Cdkn2a/Arf exon 2, showed accelerated asbestos-induced MM formation relative to mice deficient for Ink4a or Arf alone, and MMs exhibited biallelic loss of both tumor suppressor genes. The tumor suppressor function of Arf in MM was p53-independent, since MMs with loss of Arf retained functional p53. Collectively, these in vivo data indicate that both CDKN2A/ARF gene products suppress asbestos carcinogenicity. Furthermore, while inactivation of Arf appears to be crucial for MM pathogenesis, the inactivation of both p16(Ink4a) and p19(Arf) cooperate to accelerate asbestos-induced tumorigenesis.  相似文献   

2.
The susceptibility of BALB/c mice to pristane-induced plasmacytomas is a complex genetic trait involving multiple loci, while DBA/2 and C57BL/6 strains are genetically resistant to the plasmacytomagenic effects of pristane. In this model system for human B-cell neoplasia, one of the BALB/c susceptibility and modifier loci, Pctr1, was mapped to a 5.7-centimorgan (cM) chromosomal region that included Cdkn2a, which encodes p16(INK4a) and p19(ARF), and the coding sequences for the BALB/c p16(INK4a) and p19(ARF) alleles were found to be polymorphic with respect to their resistant Pctr1 counterparts in DBA/2 and C57BL/6 mice (45). In the present study, alleles of Pctr1, Cdkn2a, and D4Mit15 from a resistant strain (BALB/cDAG) carrying DBA/2 chromatin were introgressively backcrossed to the susceptible BALB/c strain. The resultant C.DAG-Pctr1 Cdkn2a D4Mit15 congenic was more resistant to plasmacytomagenesis than BALB/c, thus narrowing Pctr1 to a 1.5-cM interval. Concomitantly, resistant C57BL/6 mice, from which both gene products of the Cdkn2a gene have been eliminated, developed pristane-induced plasma cell tumors over a shorter latency period than the traditionally susceptible BALB/cAn strain. Biological assays of the p16(INK4a) and p19(ARF) alleles from BALB/c and DBA/2 indicated that the BALB/c p16(INK4a) allele was less active than its DBA/2 counterpart in inducing growth arrest of mouse plasmacytoma cell lines and preventing ras-induced transformation of NIH 3T3 cells, while the two p19(ARF) alleles displayed similar potencies in both assays. We propose that the BALB/c susceptibility/modifier locus, Pctr1, is an "efficiency" allele of the p16(INK4a) gene.  相似文献   

3.
The molecular mechanisms that lead to tubular atrophy, capillary loss, and fibrosis following acute kidney injury are not very clear but may involve cell cycle inhibition by increased expression of cyclin kinase inhibitors. The INK4a/ARF locus encodes overlapping genes for two proteins, a cyclin kinase inhibitor, p16(INK4a), and a p53 stabilizer, p19(ARF), from independent promoters. To determine if decreased INK4a gene expression results in improved kidney regeneration, INK4a knockout (KO) and wild-type (WT) mice were subjected to ischemia-reperfusion injury (IRI). p16(INK4a) and p19(ARF) levels were increased markedly in WT mice at 1-28 days after injury. Kidneys were examined to determine the localization and levels of p16(INK4a), apoptosis, cell proliferation, and capillary rarefaction. KO mice displayed decreased tubular cell apoptosis, increased cell proliferation, and lower creatinine levels after injury. KO mice had significantly higher capillary density compared with WT mice at 14-42 days after IRI. Plasma granulocyte colony-stimulating factor (G-CSF) increased after ischemia in both WT and KO mice and was elevated markedly in KO compared with WT mice. KO kidney digests contained higher counts of Gr-1(+)/Cd11b(+) myeloid cells by flow cytometry. KO mice treated with a Gr-1-depleting antibody displayed reduced vascular endothelial growth factor mRNA, plasma G-CSF, and capillary density, and an increase in serum creatinine and medullary myofibroblasts, compared with untreated KO mice 14 days after ischemia. The anti-angiogenic effect of Gr-1 depletion in KO mice was confirmed by Matrigel angiogenesis assays. These results suggest that the absence of p16(INK4a) and p19(ARF) following IRI has a protective effect on the kidney through improved epithelial and microvascular repair, in part by enhancing the mobilization of myeloid cells into the kidney.  相似文献   

4.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

5.
6.
p19(ARF) is a tumor suppressor that leads to cell cycle arrest or apoptosis by stabilizing p53. p19(ARF) is not critical for cell cycle regulation under normal conditions, but loss of p19(ARF) is seen in many human cancers, and a murine p19(Arf) knockout model leads to malignant proliferation and tumor formation; its role in controlling nonmalignant proliferation is less defined. To examine this question, pulmonary artery smooth muscle cells (PASMC) were expanded in culture from a transgenic mouse in which the coding sequence of the p19(Arf) gene was replaced with a cDNA encoding green fluorescent protein (GFP), leaving the promoter intact. During the first 10 days in culture, wild-type, heterozygous, and knockout PASMC grew similarly, but, by day 14, p19(Arf)-deficient PASMC proliferated faster than p19(Arf) heterozygous or wild-type cells; reexpression of p19(Arf) prevented the increased proliferation. This time course correlated with activation of the p19(Arf) promoter, as indicated by the appearance of GFP positivity in p19(Arf)-deficient PASMC. By day 42, ~80% of p19(Arf)-deficient cells were GFP-positive. When GFP-positive, p19(Arf)-deficient cells were sorted and subcultured separately, they remained GFP-positive, indicating that once cells had activated the p19(Arf) promoter, the promoter remained active in those and all subsequent daughter cells. In contrast, GFP-negative p19(Arf)-deficient cells gave rise to a combination of GFP-positive and -negative daughter cells over time. These results suggest that a subpopulation of PASMC are resistant to the signals that activate the p19(Arf) promoter, an event that would normally target these cells for arrest or cell death.  相似文献   

7.
8.
Preimplantation embryos utilize mitogen-activated protein kinase signaling (MAPK) pathways to relay signals from the external environment to prepare appropriate responses and adaptations to a changing milieu. It is therefore important to investigate how MAPK pathways are regulated during preimplantation development. This study was conducted to investigate whether PP2Cdelta (Ppm1d, WIP1) is expressed during mouse preimplantation development and to determine the influences of p38 MAPK inhibition on expression of Trp53 (p53), Ppm1d, (WIP1), and Cdkn2a (p16) during mouse preimplantation development. Our results indicate that Trp53, Ppm1d, and Cdkn2a mRNAs and TRP53 and PP2Cdelta proteins are expressed throughout mouse preimplantation development. Treatment of 2-cell embryos with SB220025 (potent inhibitor of p38 MAPK alpha/beta/MAPK 14/11) significantly increased Trp53, Ppm1d and Cdkn2a and Mapk14 mRNA levels at 12 and 24 hr. Treatment of 8-cell embryos with SB220025 for 12 hr increased Trp53, Ppm1d, and Cdkn2a mRNA levels, but not Mapk14 mRNA levels. Treatment of 8-cell embryos for 24 hr increased Trp53, and Ppm1d mRNA levels, but decreased Cdkn2a and Mapk14 mRNA levels. Therefore, blockade of p38 MAPK activity is associated with embryo stage specific influences on Trp53, Ppm1d, Cdkn2a, and Mapk14 expression during mouse preimplantation development. These results define downstream targets of p38 MAPK during preimplantation development and indicate that the p38 MAPK pathway regulates Trp53, Ppm1d, and Cdkn2a expression. This study increases our understanding of the mechanisms controlling preimplantation development and of the interactions between preimplantation embryos and their culture environments.  相似文献   

9.
Expression of p16(Ink4a) and p19(Arf) increases with age in both rodent and human tissues. However, whether these tumour suppressors are effectors of ageing remains unclear, mainly because knockout mice lacking p16(Ink4a) or p19(Arf) die early of tumours. Here, we show that skeletal muscle and fat, two tissues that develop early ageing-associated phenotypes in response to BubR1 insufficiency, have high levels of p16(Ink4a) and p19(Arf). Inactivation of p16(Ink4a) in BubR1-insufficient mice attenuates both cellular senescence and premature ageing in these tissues. Conversely, p19(Arf) inactivation exacerbates senescence and ageing in BubR1 mutant mice. Thus, we identify BubR1 insufficiency as a trigger for activation of the Cdkn2a locus in certain mouse tissues, and demonstrate that p16(Ink4a) is an effector and p19(Arf) an attenuator of senescence and ageing in these tissues.  相似文献   

10.
The ARF (p19ARF for the mouse ARF consisting of 169 amino acids and p14ARF for the human ARF consisting of 132 amino acids) genes upregulate p53 activities to induce cell cycle arrest and sensitize cells to apoptosis by inhibiting Mdm2 activity. p53-independent apoptosis also is induced by ectopic expression of p19ARF. We constructed various deletion mutants of p19ARF with a cre/loxP-regulated adenoviral vector to determine the regions of p19ARF which are responsible for p53-independent apoptosis. Ectopic expression of the C-terminal region (named C40) of p19ARF whose primary sequence is unique to the rodent ARF induced prominent apoptosis in p53-deficient mouse embryo fibroblasts. Relatively low-grade but significant apoptosis also was induced in p53-deficient mouse embryo fibroblasts by ectopic expression of p19ARF1-129, a p19ARF deletion mutant deficient in the C40 region. In contrast, ectopic expression of the wild-type p14ARF did not induce significant apoptosis in human cells. Taken together, we concluded that p53-independent apoptosis was mediated through multiple regions of the mouse ARF including C40, and the ability of the ARF gene to mediate p53-independent apoptosis has been not well conserved during mammalian evolution.  相似文献   

11.
Mouse and human cells have most frequently been used for studies that have led to the elucidation of various molecular pathways involved in senescence. The ARF-p53 pathway has been assigned as one of the major protagonists in these phenomena. ARF is an alternative reading frame protein encoded along with p16INK4A by the INK4a locus on human chromosome 9p21 and the corresponding locus on mouse chromosome 4. Whereas the mouse ARF (p19ARF) consists of 169 amino acids, the human ARF (p14ARF) consists of 132 amino acids, truncated at the C-terminus. Molecular studies on the regulation of ARF activity by its binding partners have revealed that mouse ARF protein, but not human ARF protein, interacts with a cytoplasmic protein, Pex19p. This interaction of mouse ARF with Pex19p results in its milder p53 activation function in mouse cells as compared to human cells and thus accounts, at least in part, for the weaker tumor surveillance and frequent immortalization of mouse cells.  相似文献   

12.
The stabilization and subcellular localization of the p19Arf tumor suppressor protein and the SUMO-2/3 deconjugating protease Senp3 each depend upon their binding to the abundant nucleolar protein nucleophosmin (Npm/B23). Senp3 and p19Arf antagonize each otherâ€?s functions in regulating the SUMOylation of target proteins including Npm itself. The p19Arf protein triggers the sequential phosphorylation, polyubiquitination, and rapid proteasomal degradation of Senp3, and this ability of p19Arf to accelerate Senp3 turnover also depends on the presence of Npm. In turn, endogenous p19Arf and Senp3 are both destabilized in viable Npm-null mouse embryo fibroblasts (that also lack p53), and reintroduction of the human NPM protein into these cells reverses this phenotype. NPM mutants that retain their acidic and oligomerization domains can re-stabilize both p19Arf and Senp3 in this setting, but the nucleolar localization of NPM is not strictly required for these effects. Knockdown of Senp3 with shRNAs mimics the anti-proliferative functions of p19Arf in cells that lack p53 alone or in triple knock-out cells that lack the Arf, Mdm2 and p53 genes. These findings reinforce the hypothesis that the p53-independent tumor suppressive functions of p19Arf may be mediated by its ability to antagonize Senp3, thereby inducing cell cycle arrest by abnormally elevating the cellular levels of SUMOylated proteins.  相似文献   

13.
Tumor suppression by Ink4a-Arf: progress and puzzles   总被引:34,自引:0,他引:34  
  相似文献   

14.
15.
16.
Modeling INK4/ARF tumor suppression in the mouse   总被引:1,自引:0,他引:1  
The INK4/ARF locus encodes the p15(INK4B), p16(INK4A) and p14(ARF) tumor suppressor proteins whose loss of function is associated with the pathogenesis of many human cancers. Dissecting the relative contribution of these genes to growth control in vivo is complicated by their physical contiguity and the frequency of homozygous deletions that inactivate all three components of this locus. While genetically engineered mouse models provide a rigorous system for elucidating cancer gene function, there is some evidence to suggest there are cross-species differences in regulating tumor biology. Given the prevalence of mouse models in cancer research and the potential contribution of such models to preclinical studies, it is important determine to what degree the function of these critical tumor suppressors is conserved between organisms. In this review, we assess the relative biological roles of INK4A, INK4B and ARF in mice and humans with the aim of determining the faithfulness of mouse models and also of obtaining insights into the pattern of specific tumor types that are associated with germline and somatic mutations at components of this locus. We will discuss 1) the contribution of INK4A, INK4B and ARF to growth control in vitro in a series of cell types, 2) the in vivo phenotypes associated with germline loss of function of this locus and 3) the study of Ink4a and Arf in different cancer-specific mouse models.  相似文献   

17.
Prolonged culturing of rodent cells in vitro activates p19(ARF) (named p14(ARF) in man), resulting in a p53-dependent proliferation arrest known as senescence. The p19(ARF)-Mdm2-p53 pathway also serves to protect primary cells against oncogenic transformation. We have used a genetic screen in mouse neuronal cells, conditionally immortalized by a temperature-sensitive mutant of SV40 large T antigen, to identify genes that allow bypass of senescence. Using retroviral cDNA expression libraries, we have identified TBX-3 as a potent inhibitor of senescence. TBX-3 is a T-box gene, which is found mutated in the human developmental disorder Ulnar-Mammary Syndrome. We have shown that TBX-3 potently represses expression of both mouse p19(ARF) and human p14(ARF). We have also shown here that point mutants of TBX-3, which are found in Ulnar-Mammary Syndrome, have lost the ability to inhibit senescence and fail to repress mouse p19(ARF) and human p14(ARF) expression. These data suggest that the hypoproliferative features of this genetic disorder may be caused, at least in part, by deregulated expression of p14(ARF).  相似文献   

18.
The INK4A locus encodes two independent but overlapping genes, p16INK4A and p19ARF, and is frequently inactivated in human cancers. The unusual structure of this locus has lead to ambiguity regarding the biological role of each gene. Here we express, in primary mouse embryonic fibroblasts (MEFs), antisense RNA constructs directed specifically towards either p16INK4A or p19 ARF. Such constructs induce extended lifespan in primary MEFs; this lifespan extension is reversed upon subsequent elimination of the p16INK4A or p19ARF antisense constructs. In immortal derivatives of cell lines expressing antisense p16INK4A or p19ARF RNA, growth arrest induced by recovery of p16INK4A expression is bypassed by compromising the function of the retinoblastoma protein (Rb), whereas growth arrest induced by re-expression of p19ARF is overcome only by simultaneous inactivation of both the Rb and the p53 pathways. Thus, the physically overlapping p16INK4A and p19ARF genes act in partly overlapping pathways.  相似文献   

19.
Role of cell cycle regulator p19ARF in regulating T cell responses   总被引:1,自引:0,他引:1  
Although it is well established that the processes of cellular proliferation and apoptosis are linked, the role of cell cycle regulators in T cell responses in vivo is not well understood. In recent years, tumor suppressor molecule p19(ARF) has emerged as a key cell cycle regulator important in cellular apoptosis against strong mitogenic stimuli. In this study, we compared the antigen-specific T cell responses between wild type (+/+) and p19(ARF)-deficient (p19-/-) mice following an acute infection with lymphocytic choriomeningitis virus (LCMV). p19-/- mice mounted a potent CD8 T cell response and the magnitude of expansion of LCMV-specific CD8 T cells was comparable to that of +/+ mice. Further, the clonal downsizing of the expanded virus-specific CD8 T cells and establishment of long-term T cell memory were minimally affected by p19(ARF) deficiency. Therefore, p19(ARF) function is not essential to regulate T cell responses following an acute viral infection.  相似文献   

20.
Senescence of cultured cells involves activation of the p19Arf-p53 and the p16Ink4a-Rb tumor suppressor pathways. This, together with the observation that p19Arf and p16Ink4a expression increases with age in many tissues of humans and rodents, led to the speculation that these pathways drive in vivo senescence and natural aging. However, it has been difficult to test this hypothesis using a mammalian model system because inactivation of either of these pathways results in early death from tumors. One approach to bypass this problem would be to inactivate these pathways in a murine segmental progeria model such as mice that express low amounts of the mitotic checkpoint protein BubR1 (BubR1 hypomorphic mice). These mice have a five-fold reduced lifespan and develop a variety of early-aging associated phenotypes including cachetic dwarfism, skeletal muscle degeneration, cataracts, arterial stiffening, (subcutaneous) fat loss, reduced stress tolerance and impaired wound healing. Importantly, BubR1 hypomorphism elevates both p16Ink4a and p19Arf expression in skeletal muscle and fat. Inactivation of p16Ink4a in BubR1 mutant mice delays both cellular senescence and aging specifically in these tissues. Surprisingly, however, inactivation of p19Arf has the opposite effect; it exacerbates in vivo senescence and aging in skeletal muscle and fat. These mouse studies suggest that p16Ink4a is indeed an effector of aging and in vivo senescence, but p19Arf an attenuator. Thus, the role of the p19Arf-p53 pathway in aging and in vivo senescence seems far more complex than previously anticipated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号