首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Terminal differentiation is characterized by a permanent withdrawal of cells from the cell cycle. Retinoblastoma protein (RB) has been involved in cell cycle progression. Accumulating evidence also implicates RB in the promotion of differentiation of many cell types. We present new insights into the role of RB and other cell cycle regulatory proteins in adipocyte differentiation and on the role of retinoic acid (RA) in the regulation of the latter process. It is shown that RA reduces RB expression and enhances RB phosphorylation by a mechanism that involves down-regulation of the cyclin-dependent kinase inhibitor (CKI) p21(Cip1), having this fact as important consequences for both the cell cycle progression and the adipocyte differentiation process. The effects of RA result in the blockage of adipogenesis, but may also favor the retention of a pool of adipose cells able to re-enter the cell cycle, which may be important for the developmental dynamics of adipose tissue in vivo. In addition, these results reinforce the idea that there is a cross-talk between the cell cycle machinery and the adipocyte differentiation machinery that can be modulated by external signals, including nutrients.  相似文献   

7.
8.
9.
The retinoblastoma tumor suppressor (RB) was the first identified tumor suppressor based on germline predisposition to the pediatric eye tumor. Since these early studies, it has become apparent that the functional inactivation of RB is a common event in nearly all human malignancy. A great deal of research has gone into understanding how the loss of RB promotes tumor etiology and progression. Since malignant tumors are characterized by aberrant cell division, much of this research has focused upon the ability of RB to regulate the cell cycle by repression of proliferation-related genes. However, it is progressively understood that RB is an important mediator of multiple functions. One area that is gaining progressive interest is the emerging role for RB in regulating diverse features of immune function. These findings suggest that RB is more than simply a regulator of cellular proliferation; it is at the crossroads of proliferation and the immune response. Here we review the data related to the functional roles of RB on the immune system, relevance to immune evasion, and potential significance to the response to immune-therapy.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The retinoblastoma protein (RB) has previously been shown to facilitate adipocyte differentiation by inducing cell cycle arrest and enhancing the transactivation by the adipogenic CCAAT/enhancer binding proteins (C/EBP). We show here that the peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor pivotal for adipogenesis, promotes adipocyte differentiation more efficiently in the absence of RB. PPARgamma and RB were shown to coimmunoprecipitate, and this PPARgamma-RB complex also contains the histone deacetylase HDAC3, thereby attenuating PPARgamma's capacity to drive gene expression and adipocyte differentiation. Dissociation of the PPARgamma-RB-HDAC3 complex by RB phosphorylation or by inhibition of HDAC activity stimulates adipocyte differentiation. These observations underscore an important function of both RB and HDAC3 in fine-tuning PPARgamma activity and adipocyte differentiation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号