首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
《Epigenetics》2013,8(12):1454-1462
Borderline personality disorder (BPD) is a complex psychiatric disease of increasing importance. Epigenetic alterations are hallmarks for altered gene expression and could be involved in the etiology of BPD. In our study we analyzed DNA methylation patterns of 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH). DNA methylation was analyzed by bisulfite restriction analysis and pyrosequencing in whole blood samples of patients diagnosed with DSM-IV BPD and in controls. Aberrant methylation was not detectable using bisulfite restriction analysis, but a significantly increased methylation of HTR2A, NR3C1, MAOA, MAOB and soluble COMT (S-COMT) was revealed for BPD patients using pyrosequencing. For HTR2A the average methylation of four CpG sites was 0.8% higher in BPD patients compared to controls (p = 0.002). The average methylation of NR3C1 was 1.8% increased in BPD patients compared to controls (p = 0.0003) and was higher at 2 out of 8 CpGs (p ≤ 0.04). In females, an increased average methylation (1.5%) of MAOA was observed in BPD patients compared to controls (p = 0.046). A similar trend (1.4% higher methylation) was observed for MAOB in female BPD patients and increased methylation was significant for 1 out of 6 CpG sites. For S-COMT, a higher methylation of 2 out of 4 CpG sites was revealed in BPD patients (p ≤ 0.02). In summary, methylation signatures of several promoter regions were established and a significant increased average methylation (1.7%) occurred in blood samples of BPD patients (p < 0.0001). Our data suggest that aberrant epigenetic regulation of neuropsychiatric genes may contribute to the pathogenesis of BPD.  相似文献   

2.
Several studies suggest involvement of serotoninergic system in the pathophysiology of Autism Spectrum Disorder (ASD). The 5-HT receptor binding studies using 3H-lysergic acid diethylamide (3H-LSD) and linkage analysis provided evidences to consider HTR2A as a potential candidate gene for ASD. The three SNPs, −1438A/G (rs6311), 102T/C (rs6313) and 1354C/T (rs6314) of HTR2A have been well studied in the etiology of various neuropsychiatric disorders. But studies on association of this gene with ASD are limited to two reports from American and Korean populations. Additionally there are reports, which demonstrated paternal imprinting of HTR2A with expression from only one allele. So far no reports are available on HTR2A and its association with any neuropsychiatric disorders from Indian population. Therefore, the present study investigates association of the above mentioned three markers of HTR2A with ASD in Indian population using population and family-based approaches. The study also deals with allelic expression pattern of HTR2A in Peripheral Blood Leukocytes (PBLs) to understand the parental imprinting status. The genotyping analyses were carried out for probands, parents and controls. The subsequent association analyses did not show association of these markers with ASD. So, HTR2A is unlikely to be a genetic marker for ASD in Indian population. The expression analyses showed absence of monoallelic expression, suggesting lack of parental imprinting of HTR2A gene. However, we noticed methylation of the CpG sites at −1438A/G and 102T/C loci of HTR2A gene. Further bioinformatics analysis revealed absence of CpG islands in the promoter of the gene supporting biallelic expression pattern of HTR2A in PBLs.  相似文献   

3.
《Epigenetics》2013,8(7):928-936
Folic acid (FA) supplementation before and during pregnancy has been associated with decreased risk of neural tube defects although recent reports suggest it may also increase the risk of other chronic diseases. We evaluated exposure to maternal FA supplementation before and during pregnancy in relation to aberrant DNA methylation at two differentially methylated regions (DMRs) regulating Insulin-like Growth Factor 2 (IGF2) expression in infants. Aberrant methylation at these regions has been associated with IGF2 deregulation and increased susceptibility to several chronic diseases. Using a self-administered questionnaire, we assessed FA intake before and during pregnancy in 438 pregnant women. Pyrosequencing was used to measure methylation at two IGF2 DMRs in umbilical cord blood leukocytes. Mixed models were used to determine relationships between maternal FA supplementation before or during pregnancy and DNA methylation levels at birth. Average methylation at the H19 DMR was 61.2%. Compared to infants born to women reporting no FA intake before or during pregnancy, methylation levels at the H19 DMR decreased with increasing FA intake (2.8%, p=0.03, and 4.9%, p=0.04, for intake before and during pregnancy, respectively). This methylation decrease was most pronounced in male infants (p=0.01). Methylation alterations at the H19 DMR are likely an important mechanism by which FA risks and/or benefits are conferred in utero. Because stable methylation marks at DMRs regulating imprinted genes are acquired before gastrulation, they may serve as archives of early exposures with the potential to improve our understanding of developmental origins of adult disease.  相似文献   

4.
Neonatal abstinence syndrome (NAS) due to in‐utero opioid exposure has significant variability of severity. Preliminary studies have suggested that epigenetic variation within the μ‐opioid receptor (OPRM1) gene impacts NAS. We aimed to determine if DNA methylation in OPRM1 within opioid‐exposed mother‐infant dyads is associated with differences in NAS severity in an independent cohort. Full‐term opioid‐exposed newborns and their mothers (N = 68 pairs) were studied. A DNA sample was obtained and then assessed for level of DNA methylation at 20 CpG sites within the OPRM1 promoter region by next‐generation sequencing. Infants were monitored for NAS and treated with replacement opioids according to institutional protocol. The association between DNA methylation level at each CpG site with NAS outcome measures was evaluated using linear and logistic regression models. Higher methylation levels within the infants at the ?18 (11.4% vs 4.4%, P = .0001), ?14 (46.1% vs 24.0%, P = .002) and +23 (26.3% vs 12.9%, P = .008) CpG sites were associated with higher rates of infant pharmacologic treatment. Higher levels of methylation within the mothers at the ?169 (R = 0.43, P = .008), ?152 (R = 0.40, P = .002) and +84 (R = 0.44, P = .006) sites were associated point‐wise with longer infant length of stay. Maternal associations remained significant point‐wise for ?169 (β = 0.07, P = .007) and on an experiment‐wise level for +84 (β = ?0.10, P = .003) using regression models. These results suggest an association of higher levels of OPRM1 methylation at specific CpG sites and increased NAS severity, replicating prior findings. These findings have important implications for personalized treatment regimens for infants at high risk for severe NAS.  相似文献   

5.
《Epigenetics》2013,8(5):685-692
Constitutional epigenetic changes detected in blood or non-disease involving tissues have been associated with disease susceptibility. We measured promoter methylation of CDKN2A (p16 and p14ARF) and 13 melanoma-related genes using bisulfite pyrosequencing of blood DNA from 114 cases and 122 controls in 64 melanoma-prone families (26 segregating CDKN2A germline mutations). We also obtained gene expression data for these genes using microarrays from the same blood samples. We observed that CDKN2A epimutation is rare in melanoma families, and therefore is unlikely to cause major susceptibility in families without CDKN2A mutations. Although methylation levels for most gene promoters were very low (<5%), we observed a significantly reduced promoter methylation (odds ratio = 0.63, 95% confidence interval = 0.50, 0.80, P < 0.001) and increased expression (fold change = 1.27, P = 0.048) for TNFRSF10C in melanoma cases. Future research in large prospective studies using both normal and melanoma tissues is required to assess the significance of TNFRSF10C methylation and expression changes in melanoma susceptibility.  相似文献   

6.
Autism is a neurodevelopmental disorder of unclear etiology. The consistent finding of platelet hyperserotonemia in a proportion of patients and its heritability within affected families suggest that genes involved in the serotonin system play a role in this disorder. The role in autism etiology of seven candidate genes in the serotonin metabolic and neurotransmission pathways and mapping to autism linkage regions (SLC6A4, HTR1A, HTR1D, HTR2A, HTR5A, TPH1 and ITGB3) was analyzed in a sample of 186 nuclear families. The impact of interactions among these genes in autism was assessed using the multifactor-dimensionality reduction (MDR) method in 186 patients and 181 controls. We further evaluated whether the effect of specific gene variants or gene interactions associated with autism etiology might be mediated by their influence on serotonin levels, using the quantitative transmission disequilibrium test (QTDT) and the restricted partition method (RPM), in a sample of 109 autistic children. We report a significant main effect of the HTR5A gene in autism (P = 0.0088), and a significant three-locus model comprising a synergistic interaction between the ITGB3 and SLC6A4 genes with an additive effect of HTR5A (P < 0.0010). In addition to the previously reported contribution of SLC6A4, we found significant associations of ITGB3 haplotypes with serotonin level distribution (P = 0.0163). The most significant models contributing to serotonin distribution were found for interactions between TPH1 rs4537731 and SLC6A4 haplotypes (P = 0.002) and between HTR1D rs6300 and SLC6A4 haplotypes (P = 0.013). In addition to the significant independent effects, evidence for interaction between SLC6A4 and ITGB3 markers was also found. The overall results implicate SLC6A4 and ITGB3 gene interactions in autism etiology and in serotonin level determination, providing evidence for a common underlying genetic mechanism and a molecular explanation for the association of platelet hyperserotonemia with autism. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system that affects primarily distal respiratory pathways and lung parenchyma. Smoking tobacco is a major risk factor for COPD. The relationship of HTR4 (rs3995090), HTR2A (rs6313), GRIK5 (rs8099939), GRIN2B (rs2268132), and CHRNB4 (rs1948) gene polymorphisms and COPD, as well as the contribution of these polymorphisms to the variations in quantitative characteristics that describe respiratory function, smoking behavior, and nicotine dependence was assessed in an ethnically homogeneous Tatar population. The polymorphisms of HTR2A (rs6313) (P = 0.026, OR = 1.42 for the CC genotype) and GRIN2B (rs2268132) (P = 0.0001, OR = 2.39 for the TT genotype) were significantly associated with increased risk of COPD. The AA genotype of GRIK5 (rs8099939) had a protective effect (P = 0.02, OR = 0.61). Importantly, the HTR2A (rs6313), GRIN2B (rs2268132), and GRIK5 (rs8099939) polymorphisms were only associated with COPD in smokers. Smoking index (pack-years) was significantly higher in carriers of the GRIK5 genotype AC (rs8099939) (P = 0.0027). The TT genotype of GRIN2B (rs2268132) was associated with COPD in subjects with high nicotine dependence according to the Fagerström test (P = 0.002, OR = 2.98). The TT genotype of HTR2A (rs6313) was associated with a reduced risk of the disease in the group with moderate nicotine dependence (P = 0.02, OR = 0.22). The CC genotype of HTR2A (rs6313) and the TT genotype of GRIN2B (rs2268132) were associated with higher levels of nicotine dependence according to the Fagerström test (P = 0.0011 and P = 0.037). Our results may provide insight into potential molecular mechanisms that involve the glutamate (GRIK5, GRIN2B) and serotonin (HTR2A) receptor genes in the pathogenesis of COPD.  相似文献   

8.
Multiplex methylation-sensitive (MSe-PCR) and methylation-specific (MSp-PCR) PCRs were used to detect aberrant methylation of CpG islands in the promoter regions and first exons of p16/CDKN2A and p14/ARF in non-small cell lung cancer (NSCLC, 54 specimens) and B-cell acute lymphoblastic leukemia (B-ALL, 61 specimens). A difference in CpG methylation was observed for individual specimens and for the two malignancies. A high methylation frequency of the first exon of p16/CDKN2A was detected both in NSCLC (68%) and in B-ALL (55%). The CpG island of the p14/ARF first exon proved to be nonmethylated in both malignancies. Particular CpG-rich fragments were examined in the p16/CDKN2A and p14/ARF promoters. It was shown that methylation frequency can differ between the 5 regions of one promoter. The sensitivity was compared for MSe-PCR and MSp-PCR, which are commonly employed in methylation analysis.  相似文献   

9.
Several studies suggest involvement of serotoninergic system in the pathophysiology of Autism Spectrum Disorder (ASD). The 5-HT receptor binding studies using 3H-lysergic acid diethylamide (3H-LSD) and linkage analysis provided evidences to consider HTR2A as a potential candidate gene for ASD. The three SNPs, −1438A/G (rs6311), 102T/C (rs6313) and 1354C/T (rs6314) of HTR2A have been well studied in the etiology of various neuropsychiatric disorders. But studies on association of this gene with ASD are limited to two reports from American and Korean populations. Additionally there are reports, which demonstrated paternal imprinting of HTR2A with expression from only one allele. So far no reports are available on HTR2A and its association with any neuropsychiatric disorders from Indian population. Therefore, the present study investigates association of the above mentioned three markers of HTR2A with ASD in Indian population using population and family-based approaches. The study also deals with allelic expression pattern of HTR2A in Peripheral Blood Leukocytes (PBLs) to understand the parental imprinting status. The genotyping analyses were carried out for probands, parents and controls. The subsequent association analyses did not show association of these markers with ASD. So, HTR2A is unlikely to be a genetic marker for ASD in Indian population. The expression analyses showed absence of monoallelic expression, suggesting lack of parental imprinting of HTR2A gene. However, we noticed methylation of the CpG sites at −1438A/G and 102T/C loci of HTR2A gene. Further bioinformatics analysis revealed absence of CpG islands in the promoter of the gene supporting biallelic expression pattern of HTR2A in PBLs.  相似文献   

10.
《Epigenetics》2013,8(9):1105-1113
Genetic loci displaying environmentally responsive epigenetic marks, termed metastable epialleles, offer a solution to the paradox presented by genetically identical yet phenotypically distinct individuals. The murine viable yellow agouti (Avy) metastable epiallele exhibits stochastic DNA methylation and histone modifications associated with coat color variation in isogenic individuals. The distribution of Avy variable expressivity shifts following maternal nutritional and environmental exposures. To characterize additional murine metastable epialleles, we utilized genome-wide expression arrays (N = 10 male individuals, 3 tissues per individual) and identified candidates displaying large variability in gene expression among individuals (Vi = inter-individual variance), concomitant with a low variability in gene expression across tissues from the three germ layers (Vt = inter-tissue variance), two features characteristic of the Avy metastable epiallele. The CpG island in the promoter of Dnajb1 and two contraoriented ERV class II repeats in Glcci1 were validated to display underlying stochasticity in methylation patterns common to metastable epialleles. Furthermore, liver DNA methylation in mice exposed in utero to 50 mg bisphenol A (BPA)/kg diet (N = 91) or a control diet (N = 79) confirmed environmental lability at validated candidate genes. Significant effects of exposure on mean CpG methylation were observed at the Glcci1 Repeat 1 locus (p &lt; 0.0001). Significant effects of BPA also were observed at the first and fifth CpG sites studied in Glcci1 Repeat 2 (p &lt; 0.0001 and p = 0.004, respectively). BPA did not affect methylation in the promoter of Dnajb1 (p = 0.59). The characterization of metastable epialleles in humans is crucial for the development of novel screening and therapeutic targets for human disease prevention.  相似文献   

11.
Methylation-sensitive restriction endonuclease analysis (MSRA) followed by polymerase chain reaction (PCR) have been used to estimate the methylation level of 13 CpG dinucleotides in the promoter region of the putative suppressor gene RASSF1A (3p21.31) in squamous cell carcinomas of the uterine cervix (SCCs) carrying human papillomavirus (HPV) types 16, 18, and related types. Methylation of 3 to 13 CpG pairs has been found in 64% (25 out of 39) tumor DNA samples, 22% (2 out of 9) DNA samples from morphologically normal tissues adjacent to the tumor (P = 0.0306), and two out of three DNA samples from peripheral blood leukocytes of carcinoma patients. These CpG pairs are not methylated in the DNA of leukocytes of healthy donors (0 out of 10). The methylation level of the RASSF1A promoter region studied in tumors of the patients with regional lymph node metastases is significantly higher than in tumors of the patient that have no metastases (P = 8.5 × 10–12). The methylation frequency of gene RASSF1A is two times higher than the frequency of hemi- and homozygous deletions in the chromosome 3 region where the gene is located. The data obtained indicate that methylation is one of the main mechanisms of the RASSF1A gene inactivation in HPV-positive human cervical tumors. The methylation of this gene may be an early event in the genesis of cervical tumors, the methylation level increasing with tumor progression.  相似文献   

12.
Epigenetic mechanisms involved in primary hyperparathyroidism are poorly understood as studies are limited. In order to understand the role of aberrant DNA promoter methylation in the pathogenesis of parathyroid tumors, we have quantified the CpG island promoter methylation density of several candidate genes including APC (promoter 1A and 1B), β-catenin (CTNNB1), CASR, CDC73/HRPT2, MEN1, P16 (CDKN2A), PAX1, RASSF1A, SFRP1 and VDR in 72 parathyroid tumors and 3 normal parathyroid references using bisulfite pyrosequencing. Global methylation levels were assessed for LINE-1. We also compared methylation levels with gene expression levels measured by qRT-PCR for genes showing frequent hypermethylation. The adenomas displayed frequent hypermethylation of APC 1A (37/66; 56%), RASSF1A (34/66; 52%) and β-catenin (19/66; 29%). One of the three atypical adenomas was hypermethylated for APC 1A. The three carcinomas were hypermethylated for RASSF1A and SFRP1, and the latter was only observed in this subtype. The global methylation density was similar in tumors (mean 70%) and parathyroid reference samples (mean 70%). In general, hypermethylated genes had reduced expression in the parathyroid adenomas using qRT-PCR. Among the adenomas, methylation of APC 1A correlated with adenoma weight (r = 0.306, p < 0.05). Furthermore, the methylation status of RASSF1A correlated with each of APC 1A (r = 0.289, p < 0.05) and β-catenin (r = 0.315, p < 0.01). Our findings suggest a role for aberrant DNA promoter methylation of APC 1A, β-catenin and RASSF1A in a subset of parathyroid tumors.  相似文献   

13.
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = −3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes.  相似文献   

14.
Ras-association domain family of genes consist of 10 members (RASSF1-RASSF10), all containing a Ras-association (RA) domain in either the C- or the N-terminus. Several members of this gene family are frequently methylated in common sporadic cancers; however, the role of the RASSF gene family in rare types of cancers, such as bone cancer, has remained largely uninvestigated. In this report, we investigated the methylation status of RASSF1A and RASSF2 in Ewing sarcoma (ES). Quantitative real-time methylation analysis (MethyLight) demonstrated that both genes were frequently methylated in Ewing sarcoma tumors (52.5% and 42.5%, respectively) as well as in ES cell lines and gene expression was upregulated in methylated cell lines after treatment with 5-aza-2′-deoxcytidine. Overexpression of either RASSF1A or RASSF2 reduced colony formation ability of ES cells. RASSF2 methylation correlated with poor overall survival (p = 0.028) and this association was more pronounced in patients under the age of 18 y (p = 0.002). These results suggest that both RASSF1A and RASSF2 are novel epigenetically inactivated tumor suppressor genes in Ewing sarcoma and RASSF2 methylation may have prognostic implications for ES patients.  相似文献   

15.
《Epigenetics》2013,8(7):987-997
Aberrant DNA methylation is a feature of human cancer affecting gene expression and tumor phenotype. Here, we quantified promoter methylation of candidate genes and global methylation in 44 small intestinal-neuroendocrine tumors (SI-NETs) from 33 patients by pyrosequencing. Findings were compared with gene expression, patient outcome and known tumor copy number alterations. Promoter methylation was observed for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2–3, P16, LAMA1, and CDH1. By contrast APC, CDH3, HIC1, P14, SMAD2, and SMAD4 only had low levels of methylation. WIF1 methylation was significantly increased (P = 0.001) and WIF1 expression was reduced in SI-NETs vs. normal references (P = 0.003). WIF1, NKX2–3, and CXCL14 expression was reduced in metastases vs. primary tumors (P < 0.02). Low expression of RASSF1A and P16 were associated with poor overall survival (P = 0.045 and P = 0.011, respectively). Global methylation determined by pyrosequencing of LINE1 repeats was reduced in tumors vs. normal references, and was associated with loss in chromosome 18. The tumors fell into three clusters with enrichment of WIF1 methylation and LINE1 hypomethylation in Cluster I and RASSF1A and CTNNB1 methylation and loss in 16q in Cluster II. In Cluster III, these alterations were low-abundant and NKX2-3 methylation was low. Similar analyses in the SI-NET cell lines HC45 and CNDT2 showed methylation for CDH1 and WIF1 and/or P16, CXCL14, NKX2-3, LAMA1, and CTNNB1. Treatment with the demethylating agent 5-azacytidine reduced DNA methylation and increased expression of these genes in vitro. In conclusion, promoter methylation of tumor suppressor genes is associated with suppressed gene expression and DNA copy number alterations in SI-NETs, and may be restored in vitro.  相似文献   

16.
DNA methylation changes are known to occur in gastric cancers and in premalignant lesions of the gastric mucosae. In order to examine variables associated with methylation levels, we quantitatively evaluated DNA methylation in tumors, non-tumor gastric mucosae, and in gastric biopsies at promoters of 5 genes with methylation alterations that discriminate gastric cancers from non-tumor epithelia (EN1, PCDH10, RSPO2, ZIC1, and ZNF610). Among Colombian subjects at high and low risk for gastric cancer, biopsies from subjects from the high-risk region had significantly higher levels of methylation at these 5 genes than samples from subjects in the low risk region (p ≤ 0.003). When results were stratified by Helicobacter pylori infection status, infection with a cagA positive, vacA s1m1 strain was significantly associated with highest methylation levels, compared with other strains (p = 0.024 to 0.001). More severe gastric inflammation and more advanced precancerous lesions were also associated with higher levels of DNA methylation (p ≤ 0.001). In a multivariate model, location of residence of the subject and the presence of cagA and vacA s1m1 in the H. pylori strain were independent variables associated with higher methylation in all 5 genes. High levels of mononuclear cell infiltration were significantly related to methylation in PCDH10, RSPO2, and ZIC1 genes. These results indicate that for these genes, levels of methylation in precancerous lesions are related to H. pylori virulence, geographic region and measures of chronic inflammation. These genes seem predisposed to sustain significant quantitative changes in DNA methylation at early stages of the gastric precancerous process.  相似文献   

17.
《Epigenetics》2013,8(12):1641-1647
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs.  相似文献   

18.
Tractability, or how easily animals can be trained and controlled, is an important behavioural trait for the management and training of domestic animals, but its genetic basis remains unclear. Polymorphisms in the serotonin receptor 1A gene (HTR1A) have been associated with individual variability in anxiety‐related traits in several species. In this study, we examined the association between HTR1A polymorphisms and tractability in Thoroughbred horses. We assessed the tractability of 167 one‐year‐old horses reared at a training centre for racehorses using a questionnaire consisting of 17 items. A principal components analysis of answers contracted the data to five principal component (PC) scores. We genotyped two non‐synonymous single nucleotide polymorphisms (SNPs) in the horse HTR1A coding region. We found that one of the two SNPs, c.709G>A, which causes an amino acid change at the intracellular region of the receptor, was significantly associated with scores of four of five PCs in fillies (all Ps < 0.05) and one PC in colts (< 0.01). Horses carrying an A allele at c.709G>A showed lower tractability. This result provides the first evidence that a polymorphism in a serotonin‐related gene may affect tractability in horses with the effect partially different depending on sex.  相似文献   

19.
Animal temperament is defined as the consistent behavioral and physiological differences that are seen between individuals in response to the same stressor. Neurotransmitter systems, like serotonin and oxytocin in the central nervous system, underlie variation in behavioral traits in humans and other animals. Variations like single nucleotide polymorphisms (SNPs) in the genes for tryptophan 5-hydroxylase (TPH2), the serotonin transporter (SLC6A4), the serotonin receptor (HTR2A), and the oxytocin receptor (OXTR) are associated with behavioral phenotype in humans. Thus, the objective of this study was to identify SNPs in those genes and to test if those variations are associated with the temperament in Merino sheep. Using ewes from the University of Western Australia temperament flock, which has been selected on emotional reactivity for more than 20 generations, eight SNPs (rs107856757, rs107856818, rs107856856 and rs107857156 in TPH2, rs20917091 in SLC6A4, rs17196799 and rs17193181 in HTR2A, and rs17664565 in OXTR) were found to be distributed differently between calm and nervous sheep. These eight SNPs were then genotyped in 260 sheep from a flock that has never been selected on emotional reactivity, followed by the estimation of the behavioral traits of those 260 sheep using an arena test and an isolation box test. We found that several SNPs in TPH2 (rs107856757, rs107856818, rs107856856 and rs107857156) were in strong linkage disequilibrium, and all were associated with behavioral phenotype in the nonselected sheep. Similarly, rs17196799 in HTR2A was also associated with the behavioral phenotype.  相似文献   

20.
The individual variation of temperament features (such as anxiety, neuroticism, harm avoidance) is determined, among other things, by allele polymorphism of genes involved in serotonin metabolism and has earlier been associated with the insertion/deletion polymorphism of the serotonin transporter gene. Polymorphic alleles of the serotonin 2A receptor gene (5HTR2A) were tested for association with personality traits assessed in several tests. The T102C and A1438G polymorphisms were associated with variation in emotionality, activity, and sociability, which are integral characteristics of temperament. With each polymorphism, differences were significant only between heterozygotes and homozygotes. Carriers of T102C genotype A1/A2 displayed a lower level of anxiety-related traits, a higher score on the Hypomania scale, and a lower score on the Social Introversion scale and were assumed to have higher activity and sociability. Carriers of A1438G genotype A/G differed from homozygotes G/G in having a lower level of social introversion and a lower score on the No Close Friends scale, which testified to higher sociability of heterozygotes. Thus, the polymorphic alleles of 5HTR2A proved to be associated with personality traits in mentally healthy people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号