首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clonal cell lines representing different developmental stages of the metanephric mesenchyme were made from transgenic mice with the Simian Virus 40 T-antigen (SV40 Tag) gene driven by the Hoxa 11 promoter. The resulting mK3 cell line represented early metanephric mesenchyme, prior to induction by the ureteric bud. These cells showed a spindle-shaped, fibroblast morphology. They expressed genes characteristic of early mesenchyme, including Hoxa 11, Hoxd 11, collagen I, and vimentin. Moreover, the mK3 cells displayed early metanephric mesenchyme biological function. In organ co-culture experiments they were able to induce growth and branching of the ureteric bud. Another cell line, mK4, represented later, induced metanephric mesenchyme undergoing epithelial conversion. These cells were more polygonal, or epithelial in shape, and expressed genes diagnostic of late mesenchyme, including Pax-2, Pax-8, Wnt-4, Cadherin-6, Collagen IV, and LFB3. To better define the gene expression patterns of kidney metanephric mesenchyme cells at these two stages of development, RNAs from the mK3 and mK4 cells were hybridized to Affymetrix GeneChip probe arrays. Over 4000 expressed genes were identified and thereby implicated in kidney formation. Comparison of the mK3 and mK4 gene expression profiles revealed 121 genes showing greater than a ten-fold difference in expression level. Several are known to be expressed during metanephric mesenchyme differentiation, but most had not been previously associated with this process. In situ hybridizations were used to confirm that selected novel genes were expressed in the developing kidney.  相似文献   

2.
Increasingly recognized importance has been assumed for microRNA (miRNA) in the regulation of the delicate balance of gene expression. In our study, we aimed to explore the regulation role of miR181c towards Six2 in metanephric mesenchyme (MM) cells. Bioinformatics analysis, luciferase assay and semi‐quantitative real‐time (RT) PCR, subsequently RT PCR, Western blotting, 5‐ethynyl‐2′‐deoxyuridine cell proliferation assay, Cell Counting Kit‐8 assay, immunofluorescence and flow cytometry, were employed to verify the modulation function of miR181c on Six2 in the mK3 MM cell line that is one kind of MM cells. miR181c was predicted to bind the 3′ untranslated region of Six2 by bioinformatics analysis, which was subsequently validated by the in vitro luciferase reporter assay. Moreover, transfection of miR181c mimic can decrease the expression of Six2 both in mRNA and protein levels in mK3 cells. Still, ectopic expression of miR181c inhibits the proliferation, promotes the apoptosis and even makes the nephron progenitor phenotype lose mK3 cells. These results revealed the ability of a single miRNA–miR181c to downregulate the expression of Six2, restrain the proliferation and promote the apoptosis that even makes the nephron progenitor phenotype lose MM cells, suggesting a potential role of miR181c during the kidney development. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
4.
The involvement of chromatin remodelling in dormancy cycling in the soil seed bank (SSB) is poorly understood. Natural variation between the winter and summer annual Arabidopsis ecotypes Cvi and Bur was exploited to investigate the expression of genes involved in chromatin remodelling via histone 2B (H2B) ubiquitination/de‐ubiquitination and histone acetylation/deacetylation, the repressive histone methyl transferases CURLY LEAF (CLF) and SWINGER (SWN), and the gene silencing repressor ROS1 (REPRESSOR OF SILENCING1) and promoter of silencing KYP/SUVH4 (KRYPTONITE), during dormancy cycling in the SSB. ROS1 expression was positively correlated with dormancy while the reverse was observed for CLF and KYP/SUVH4. We propose ROS1 dependent repression of silencing and a sequential requirement of CLF and KYP/SUVH4 dependent gene repression and silencing for the maintenance and suppression of dormancy during dormancy cycling. Seasonal expression of H2B modifying genes was correlated negatively with temperature and positively with DOG1 expression, as were histone acetyltransferase genes, with histone deacetylases positively correlated with temperature. Changes in the histone marks H3K4me3 and H3K27me3 were seen on DOG1 (DELAY OF GERMINATION1) in Cvi during dormancy cycling. H3K4me3 activating marks remained stable along DOG1. During relief of dormancy, H3K27me3 repressive marks slowly accumulated and accelerated on exposure to light completing dormancy loss. We propose that these marks on DOG1 serve as a thermal sensing mechanism during dormancy cycling in preparation for light repression of dormancy. Overall, chromatin remodelling plays a vital role in temporal sensing through regulation of gene expression.  相似文献   

5.
6.
Polycomb group (PcG) proteins maintain the expression state of PcG‐responsive genes during development of multicellular organisms. Recent observations suggest that “the H3K27me3 modification” acts to maintain Polycomb repressive complex (PRC) 2, the enzyme that creates this modification, on replicating chromatin. This could in turn promote propagation of H3K27me3 on newly replicated daughter chromatin, and promote recruitment of PRC1. Other work suggests that PRC1‐class complexes can be maintained on replicating chromatin, at least in vitro, independently of H3K27me3. Thus, histone modifications and PcG proteins themselves may both be maintained through replication.  相似文献   

7.
8.
Six1 is required for the early organogenesis of mammalian kidney   总被引:12,自引:0,他引:12  
  相似文献   

9.
Urinary tract morphogenesis requires subdivision of the ureteric bud (UB) into the intra-renal collecting system and the extra-renal ureter, by responding to signals in its surrounding mesenchyme. BMP4 is a mesenchymal regulator promoting ureter development, while GREM1 is necessary to negatively regulate BMP4 activity to induce UB branching. However, the mechanisms that regulate the GREM1-BMP4 signaling are unknown. Previous studies have shown that Six1-deficient mice lack kidneys, but form ureters. Here, we show that the tip cells of Six1−/− UB fail to form an ampulla for branching. Instead, the UB elongates within Tbx18- and Bmp4-expressing mesenchyme. We find that the expression of Grem1 in the metanephric mesenchyme (MM) is Six1-dependent. Treatment of Six1−/− kidney rudiments with GREM1 protein restores ampulla formation and branching morphogenesis. Furthermore, we demonstrate that genetic reduction of BMP4 levels in Six1−/− (Six1−/−; Bmp4+/−) embryos restores urinary tract morphogenesis and kidney formation. This study uncovers an essential function for Six1 in the MM as an upstream regulator of Grem1 in initiating branching morphogenesis.  相似文献   

10.
The initiation of angiogenesis can mark the transition from tumor dormancy to active growth and recurrence. Mechanisms that regulate recurrence in human cancers are poorly understood, in part because of the absence of relevant models. The induction of ARHI (DIRAS3) induces dormancy and autophagy in human ovarian cancer xenografts but produces autophagic cell death in culture. The addition of VEGF to cultures maintains the viability of dormant autophagic cancer cells, thereby permitting active growth when ARHI is downregulated, which mimics the “recurrence” of growth in xenografts. Two inducible ovarian cancer cell lines, SKOv3-ARHI and Hey-ARHI, were used. The expression level of angiogenesis factors was evaluated by real-time PCR, immunohistochemistry, immunocytochemistry and western blot; their epigenetic regulation was measured by bisulfite sequencing and chromatin immunoprecipitation. Six of the 15 angiogenesis factors were upregulated in dormant cancer cells (tissue inhibitor of metalloproteinases-3, TIMP3; thrombospondin-1, TSP1; angiopoietin-1; angiopoietin-2; angiopoietin-4; E-cadherin, CDH1). We found that TIMP3 and CDH1 expression was regulated epigenetically and was related inversely to the DNA methylation of their promoters in cell cultures and in xenografts. Increased H3K9 acetylation was associated with higher TIMP3 expression in dormant SKOv3-ARHI cells, while decreased H3K27me3 resulted in the upregulation of TIMP3 in dormant Hey-ARHI cells. Elevated CDH1 expression during dormancy was associated with an increase in both H3K4me3 and H3K9Ac in two cell lines. CpG demethylating agents and/or histone deacetylase inhibitors inhibited the re-growth of dormant cancer cells, which was associated with the re-expression of anti-angiogenic genes. The expression of the anti-angiogenic genes TIMP3 and CDH1 is elevated during dormancy and is reduced during the transition to active growth by changes in DNA methylation and histone modification.  相似文献   

11.
12.
Plant genomes are earmarked with defined patterns of chromatin marks. Little is known about the stability of these epigenomes when related, but distinct genomes are brought together by intra‐species hybridization. Arabidopsis thaliana accessions and their reciprocal hybrids were used as a model system to investigate the dynamics of histone modification patterns. The genome‐wide distribution of histone modifications H3K4me2 and H3K27me3 in the inbred parental accessions Col‐0, C24 and Cvi and their hybrid offspring was compared by chromatin immunoprecipitation in combination with genome tiling array hybridization. The analysis revealed that, in addition to DNA sequence polymorphisms, chromatin modification variations exist among accessions of A. thaliana. The range of these variations was higher for H3K27me3 (typically a repressive mark) than for H3K4me2 (typically an active mark). H3K4me2 and H3K27me3 were rather stable in response to intra‐species hybridization, with mainly additive inheritance in hybrid offspring. In conclusion, intra‐species hybridization does not result in gross changes to chromatin modifications.  相似文献   

13.
14.
Embryonic Six2-positive nephron progenitor cells adjacent to ureteric bud tips ultimately give rise to nephron structures, including proximal and distal tubules, podocytes, Bowman’s capsules, and the glomeruli. This process requires an internal balance between self-renew and differentiation of the nephron progenitor cells, which is mediated by numerous molecules. Recent studies have shown that the neurofibromin (Nf1) null mutant mouse embryos have an 18- to 24-h developmental delay in metanephros manifesting retardation in its cephalad repositioning and reduction number of glomeruli. However, the underlying inter-/intracellular signaling mechanisms responsible for reducing number of glomeruli during nephrogenesis remain to be fully elucidated. Here, we originally detected the Nf1 expression in developing kidney and metanephric mesenchyme cells. Surprisingly, Nf1 knockdown by small interfering RNAs in the metanephric mesenchyme cells (mK3) resulted in a decreased expression of Six2, the key marker of renal progenitor cells, while the ratio of apoptotic cells was significantly increased. Furthermore, overexpression of Six2 in mk3 cells partially rescued apoptosis phenotype. Collectively, these results implied that knockdown of Nf1 resulted in apoptosis of mK3 cells in vitro probably through down-regulation of Six2 expression. Collectively, we demonstrated that down-regulated Six2 by knockdown of Nf1 resulted in apoptosis of mK3 cells in vitro. These results implied that inhibition of Nf1 may delay metanephros development via down-regulation of Six2.  相似文献   

15.
Neurogenin1 is an important bHLH protein that plays crucial role in neurogenesis. We first show that the expression of ngn1 increases drastically in RA induced neuronal differentiation. During which, a three successive stages of the epigenetic changes surrounding the ngn1 gene are found correlated with a repression to activation of the gene in P19 cells. Recruiting of a repressive histone code H3K27me3 on the ngn1 gene is the dominant change in first repression stage, which is followed by the binding of the active codes of H3K9ac, H3K14ac, and the H3K4me3 in the second and third stages of RA treatment. Additionally, BRM but not BRG1 is specifically recruited to ngn1 gene at the third stage and is positively involved in the RA induced ngn1 expression. We propose that histone modifiers and chromatin remodelers are pivotal in the activation of the ngn1 gene in RA induced differentiation of P19 cells. J. Cell. Biochem. 107: 264–271, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
辜玉萍  陈蕾  李千音 《生物工程学报》2020,36(10):2151-2161
肾脏是人体重要器官,肾脏发育对肾脏的形成和功能至关重要,其中后肾间充质细胞 (Metanephric mesenchyme,MM) 间质-上皮转化 (Mesenchymal-epithelial transition,MET) 是肾单位形成的关键环节。qRT-PCR和Western blotting实验检测蛋白质磷酸酶3催化亚基α (Protein phosphatase 3 catalytic subunit alpha,PPP3CA) 在不同状态MM细胞株mK3、mK4中的表达谱及对MET标志蛋白调控作用;采用慢病毒包装方式构建稳定敲低PPP3CA的mK4细胞株;采用CCK-8、EdU实验、细胞划痕实验、流式细胞技术分别检测PPP3CA对上皮样后肾间充质细胞株mK4细胞生长、迁移、凋亡的调控作用。PPP3CA在mK4细胞中表达量较间质样后肾间充质细胞mK3更高,敲低PPP3CA后,检测MET标志物及细胞生物学行为,结果显示敲低PPP3CA显著上调上皮细胞标志物E-cadherin表达,促进MET过程,且促进细胞凋亡,抑制细胞增殖和迁移。此外,敲低PPP3CA促进ERK1/2磷酸化,提示PPP3CA生物学功能的调控机制可能与其去磷酸化ERK1/2蛋白相关。以上结果提示PPP3CA在MM细胞MET转化和生物学行为调节中发挥重要功能,为发现和解析肾发育过程中潜在的关键调节因子提供了新的理论基础。  相似文献   

17.
18.
Methylation of histone H3 lysine 9 (H3K9me) and small RNAs are associated with constitutively silent chromatin in diverse eukaryotes including plants. In plants, silent transposons are also marked by cytosine methylation, especially at non‐CpG sites. Transposon‐specific non‐CpG methylation in plants is controlled by small RNAs and H3K9me. Although it is often assumed that small RNA directs H3K9me, interaction between small RNA and H3K9me has not been directly demonstrated in plants. We have previously shown that a mutation in the chromatin remodeling gene DDM1 (DECREASE IN DNA METHYLATION 1) induces a global decrease but a local increase of cytosine methylation and accumulation of small RNA at a locus called BONSAI. Here we show that de novo BONSAI methylation does not depend on RNAi but does depend on H3K9me. In mutants of H3K9 methyltransferase gene KRYPTONITE or the H3K9me‐dependent DNA methyltransferase gene CHROMOMETHYALSE3, the ddm1‐induced de novo cytosine methylation was abolished for all three contexts (CpG, CpHpG and CpHpH). Furthermore, RNAi mutants showed strong developmental defects when combined with the ddm1 mutation. Our results revealed unexpected interactions of epigenetic modifications that may be conserved among diverse eukaryotes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号