首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
mTOR, the mammalian target of rapamycin, has been widely implicated in signals that promote cell cycle progression and survival in cancer cells. Rapamycin, which inhibits mTOR with high specificity, has consequently attracted much attention as an anticancer therapeutic. Rapamycin suppresses phosphorylation of S6 kinase at nanomolar concentrations; however, at higher micro-molar doses, rapamycin induces apoptosis in several human cancer cell lines. While much is known about the effect of low-dose rapamycin treatment, the mechanistic basis for the apoptotic effects of high-dose rapamycin treatment is not understood. We report here that the apoptotic effects of high-dose rapamycin treatment correlate with suppressing phosphorylation of the mTOR complex 1 substrate, eukaryotic initiation factor 4E (eIF4E) binding protein-1 (4E-BP1). Consistent with this observation, ablation of eIF4E also resulted in apoptorsis in MDA-MB 231 breast cancer cells. We also provide evidence that the differential dose effects of rapamycin are correlated with partial and complete dissociation of Raptor from mTORC1 at low and high doses, respectively. In contrast with MDA-MB-231 cells, MCF-7 breast cancer cells survived rapamycin-induced suppression of 4E-BP1 phosphorylation. We show that survival correlated with a hyperphosphorylation of Akt at S473 at high rapamycin doses, the suppression of which conferred rapamycin sensitivity. This study reveals that the apoptotic effect of rapamycin requires doses that completely dissociate Raptor from mTORC1 and suppress that phosphorylation of 4E-BP1 and inhibit eIF4E.Key words: rapamycin, mTOR, 4E-BP1, eIF4E, Akt, apoptosis  相似文献   

2.
目的:多倍性是物种形成的重要机制,决定一些重要器官细胞产生的数量和功能,而且与某些病理过程(如恶性肿瘤)的发生有密切关系。我们通过建立相对同步化的多倍体细胞模型,已经证实mTOR/S6K1参与多倍体细胞周期的调控。本课题主要研究roTOR下游的另一个重要信号分子4E-BP1是否也参与细胞的倍体化调控。方法:诺考达唑诱导Dami细胞建立相对同步化的多倍体细胞模型,Western-blot分析多倍体细胞模型中mTOR/4E—BP1通路信号分子表达和磷酸化修饰位点的变化,流式细胞仪双荧光分析4E—BP1不同结构域磷酸化位点修饰与细胞周期各时相的关系。结果:诺考达唑诱导的Dami细胞可作为相对同步化的多倍体细胞周期模型,在二倍体和多倍体细胞周期中,mTOR表达增加及第2448位丝氨酸位点磷酸化发生在G1期进入S期,4E—BP1的第37,46位苏氨酸和第65位丝氨酸位点磷酸化发生在G2/M期。结论:mTOR/4E-BP1通路参与多倍体细胞周期的调控。  相似文献   

3.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

4.
Leucine stimulates protein synthesis by modulating the mammalian target of rapamycin (mTOR) signaling pathway. We hypothesized that promotion of the branched-chain amino acid (BCAA) catabolism might influence the leucine-induced protein synthesis. Clofibric acid (an active metabolite of clofibrate) is known to promote the BCAA catabolism by activation of branched-chain alpha-keto acid dehydrogenase complex (BCKDC), the rate-limiting enzyme of the BCAA catabolism. In the present study, we examined the phosphorylation state of mTOR, eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), and ribosomal protein S6 kinase 1 (S6K1) in liver of rats with or without activation of the BCKDC by clofibrate treatment. Clofibrate-treated rats were prepared by oral administration of clofibrate 5 h before sacrifice. In order to stimulate phosphorylation of components in the mTOR signaling pathway, rats were orally administered with leucine 1 h before sacrifice. Clofibrate treatment almost fully activated hepatic BCKDC and significantly decreased the plasma leucine concentration in rats without leucine administration, resulting in decreased mTOR and 4E-BP1 phosphorylation. Similarly, in rats administered with leucine, clofibrate treatment attenuated the predicted increase in plasma leucine concentration as well as the phosphorylation of mTOR, 4E-BP1, and S6K1. These results suggest that BCAA catabolism enhanced by clofibrate treatment has significant influences on the leucine-induced activation of translation initiation processes.  相似文献   

5.
6.
Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.  相似文献   

7.
8.
In this study, we document that the overall rate of protein synthesis decreases during in vitro maturation (IVM) of pig oocytes despite enhanced formation of the 5' cap structure eIF4F. Within somatic/interphase cells, formation of the eIF4F protein complex correlates very well with overall rates of protein translation, and the formation of this complex is controlled primarily by the availability of the 5' cap binding protein eIF4E. We show that the eIF4E inhibitory protein, 4E-BP1, becomes phosphorylated during IVM, which results in gradual release of eIF4E from 4E-BP1, as documented by immunoprecipitation analyses. Isoelectric focusing and Western blotting experiments show conclusively that eIF4E becomes gradually phosphorylated with a maximum at metaphase II (M II). The activity of eIF4E and its ability to bind mRNA also increases during oocyte maturation as documented in experiments with m7-methyl GTP-Sepharose, which mimics the cap structure of mRNA. Complementary analysis of flow-through fraction for 4E-BP1, and eIF4G proteins additionally provides evidence for enhanced formation of cap-binding protein complex eIF4F. Altogether, our results bring new insights to the regulation of translation initiation during meiotic division, and more specifically clarify that 4E-BP1 hyper-phosphorylation is not the cause of the observed suppression of overall translation rates.  相似文献   

9.
目的:构建4E-BP1及其 T37A、T46A、S65A、T70A 突变体4E-BP1-4A 基表达的重组慢病毒载体,研究其对胃癌 HGC27细胞生长的影响.方法:PCR 扩增4E-BP1基及其突变体4E-BP1-4A 基并克隆到 pCDH 载体,构建成 pCDH-4E-BP1、pCDH-4E-BP1-4A,将其与包装载体共转染293T 细胞,包装成 Lenti-4E-BP1及 Lenti-4E-BP1-4A重组慢病毒载体,将此慢病毒感染胃癌 HGC27细胞,Western 印迹鉴定病毒载体介导的4E-BP1、4E-BP1-4A 蛋白的表达,MTT、克隆形成和软琼脂方法研究过量表达4E-BP1、4E-BP1-4A 对胃癌 HGC27细胞生长的影响.结果:包装成 Lenti-4E-BP1及 Lenti-4E-BP1-4A 重组慢病毒载体,并将此慢病毒载体感染胃癌 HGC27细胞;MTT、克隆形成、软琼脂实验表明过量表达4E-BP1可抑制胃癌 HGC27细胞的生长,过量表达4E-BP1-4A 时抑制效果更明显.结论:构建了4E-BP1、4E-BP1-4A 的重组慢病毒表达载体,在胃癌 HGC27细胞中过量表达4E-BP1可抑制细胞生长,过量表达4E-BP1-4A 的抑制效果更明显.  相似文献   

10.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

11.
Translation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells). Using synchronized HeLa cells released from a double thymidine block (G1/S boundary) or the Cdk1 inhibitor, RO3306 (G2/M boundary), we have systematically re-addressed this dogma. Using FACS analysis and pulse labeling of proteins with labeled methionine, we now show that translation rates do not slow as cells enter mitosis. This study is complemented by studies employing confocal microscopy, which show enrichment of translation initiation factors at the microtubule organizing centers, mitotic spindle, and midbody structure during the final steps of cytokinesis, suggesting that translation is maintained during mitosis. Furthermore, we show that inhibition of translation in response to extended times of exposure to nocodazole reflects increased eIF2α phosphorylation, disaggregation of polysomes, and hyperphosphorylation of selected initiation factors, including novel Cdk1-dependent N-terminal phosphorylation of eIF4GII. Our work suggests that effects on translation in nocodazole-arrested cells might be related to those of the treatment used to synchronize cells rather than cell cycle status.  相似文献   

12.
Cap-dependent translation is a potential cancer-related target (oncotarget) due to its critical role in cancer initiation and progression. 4EGI-1, an inhibitor of eIF4E/eIF4G interaction, was discovered by screening chemical libraries of small molecules. 4EGI-1 inhibits cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex, and therefore is a potential anti-cancer agent. Here, we report that 4EGI-1 also inhibits mTORC1 signaling independent of its inhibitory role on cap-dependent translation initiation. The inhibition of mTORC1 signaling by 4EGI-1 activates Akt due to both abrogation of the negative feedback loops from mTORC1 to PI3K and activation of mTORC2. We further validated that mTORC2 activity is required for 4EGI-1-mediated Akt activation. The activated Akt counteracted the anticancer effects of 4EGI-1. In support of this model, inhibition of Akt potentiates the antitumor activity of 4EGI-1 both in vitro and in a xenograft mouse model in vivo. Our results suggest that a combination of 4EGI-1and Akt inhibitor is a rational approach for the treatment of cancer.  相似文献   

13.
Cap-dependent translation is a potential cancer-related target (oncotarget) due to its critical role in cancer initiation and progression. 4EGI-1, an inhibitor of eIF4E/eIF4G interaction, was discovered by screening chemical libraries of small molecules. 4EGI-1 inhibits cap-dependent translation initiation by impairing the assembly of the eIF4E/eIF4G complex, and therefore is a potential anti-cancer agent. Here, we report that 4EGI-1 also inhibits mTORC1 signaling independent of its inhibitory role on cap-dependent translation initiation. The inhibition of mTORC1 signaling by 4EGI-1 activates Akt due to both abrogation of the negative feedback loops from mTORC1 to PI3K and activation of mTORC2. We further validated that mTORC2 activity is required for 4EGI-1-mediated Akt activation. The activated Akt counteracted the anticancer effects of 4EGI-1. In support of this model, inhibition of Akt potentiates the antitumor activity of 4EGI-1 both in vitro and in a xenograft mouse model in vivo. Our results suggest that a combination of 4EGI-1and Akt inhibitor is a rational approach for the treatment of cancer.  相似文献   

14.
15.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

16.
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E–Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E–eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.  相似文献   

17.
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.  相似文献   

18.
The implantation of the blastocyst into the endometrium is an indispensable premise for successful embryonic development. This process is regulated by maternal and embryonic signals that influence gene expression at the translational level, among other processes. Recently, we have shown that proteolytical cleavage of the prototypical 25‐kDa, mRNA cap‐binding protein eIF4E produces a stable variant with a molecular mass of approximately 23 kDa exclusively in the porcine endometrium during implantation. This is accompanied by dephosphorylation and reduction of the abundant repressor 4E‐BP1. Here, we investigate the distribution of the truncated eIF4E and of 4E‐BP1 in the porcine uterine tissue, their binding in native samples, and we analyzed eIF4E‐, eIF4G‐, and 4E‐BP1‐specific proteolytic activities. Our results show that in pigs, the truncated eIF4E is located in the endometrial luminal epithelium during implantation. Neither glandulary tissue nor stroma expressed any truncated eIF4E. The reduced abundance of 4E‐BP1 during implantation is mainly the result of decay in the glandular epithelia. Moreover, steroid replacements, in vitro protease assays, and cell lysate fractionation showed that eIF4E cleavage and 4E‐BP1 decay both depended on the ovarian steroid hormones estradiol and progestrone, but these effects are the result of different proteolytic activities. Although eIF4G cleavage also depends on calcium, stimulation by these steroids could not be established. We propose that the translation initiation process in the endometrium is differently regulated by the truncated eIF4E, utilizing different abundances of 4E‐BP1 and binding dynamic of eIF4E/4E‐BP1 in distinct forms of implantation. Mol. Reprod. Dev. 78:895–905, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The TOR (target of rapamycin) pathway is involved in aging in diverse organisms from yeast to mammals. We have previously demonstrated in human and rodent cells that mTOR converts stress-induced cell cycle arrest to irreversible senescence (geroconversion), whereas rapamycin decelerates or suppresses geroconversion during cell cycle arrest. Here, we investigated whether rapamycin can suppress replicative senescence of rodent cells. Mouse embryonic fibroblasts (MEFs) gradually acquired senescent morphology and ceased proliferation. Rapamycin decreased cellular hypertrophy, and SA-beta-Gal staining otherwise developed by 4-6 passages, but it blocked cell proliferation, masking its effects on replicative lifespan. We determined that rapamycin inhibited pS6 at 100-300 pM and inhibited proliferation with IC50 around 30 pM. At 30 pM, rapamycin partially suppressed senescence. However, the gerosuppressive effect was balanced by the cytostatic effect, making it difficult to suppress senescence without causing quiescence. We also investigated rat embryonic fibroblasts (REFs), which exhibited markers of senescence at passage 7, yet were able to slowly proliferate until 12–14 passages. REFs grew in size, acquired a large, flat cell morphology, SA-beta-Gal staining and components of DNA damage response (DDR), in particular, γH2AX/53BP1 foci. Incubation of REFs with rapamycin (from passage 7 to passage 10) allowed REFs to overcome the replicative senescence crisis. Following rapamycin treatment and removal, a fraction of proliferating REFs gradually increased and senescent phenotype disappeared completely by passage 24.  相似文献   

20.
旨在克隆内蒙古白绒山羊4E-BP1(真核细胞翻译起始因子4E结合蛋白1)基因并进行生物信息学及表达模式分析。根据已报道物种4E-BP1基因cDNA序列,用primer premier5软件设计引物,通过RT-PCR从绒山羊胎儿成纤维细胞总RNA中扩增出4E-BP1基因编码区cDNA序列,对目的片段进行测序及表达模式分析。克隆到的内蒙古白绒山羊4E-BP1基因cDNA全长357 bp,包含了完整的的ORF,编码118个氨基酸残基。核酸序列与牛、马、人、大鼠及小鼠的同源性分别为98%、90%、90%、88%和87%。4E-BP1基因在绒山羊脑、心脏、睾丸及胰腺组织中均有表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号