首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell cycle checkpoints constitute a network of signal transduction mechanisms to monitor DNA damage and replication and thereby regulate progression through the cell cycle. A series of events is triggered in cells upon DNA damage. Here we describe a framework for the understanding of the functions of the core components involved in the cell cycle response to DNA damage and the relevance to the origin of cancer.  相似文献   

2.
Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.  相似文献   

3.
4.
BACKGROUND: Components of the DNA damage checkpoint are essential for surviving exposure to DNA damaging agents. Checkpoint activation leads to cell cycle arrest, DNA repair, and apoptosis in eukaryotes. Cell cycle regulation and DNA repair appear essential for unicellular systems to survive DNA damage. The relative importance of these responses and apoptosis for surviving DNA damage in multicellular organisms remains unclear. RESULTS: After exposure to ionizing radiation, wild-type Drosophila larvae regulate the cell cycle and repair DNA; grp (DmChk1) mutants cannot regulate the cell cycle but repair DNA; okra (DmRAD54) mutants regulate the cell cycle but are deficient in repair of double strand breaks (DSB); mei-41 (DmATR) mutants cannot regulate the cell cycle and are deficient in DSB repair. All undergo radiation-induced apoptosis. p53 mutants regulate the cell cycle but fail to undergo apoptosis. Of these, mutants deficient in DNA repair, mei-41 and okra, show progressive degeneration of imaginal discs and die as pupae, while other genotypes survive to adulthood after irradiation. Survival is accompanied by compensatory growth of imaginal discs via increased nutritional uptake and cell proliferation, presumably to replace dead cells. CONCLUSIONS: DNA repair is essential for surviving radiation as expected; surprisingly, cell cycle regulation and p53-dependent cell death are not. We propose that processes resembling regeneration of discs act to maintain tissues and ultimately determine survival after irradiation, thus distinguishing requirements between muticellular and unicellular eukaryotes.  相似文献   

5.
DNA damage checkpoints: from initiation to recovery or adaptation   总被引:4,自引:0,他引:4  
In response to diverse genotoxic stresses, cells activate DNA damage checkpoint pathways to protect genomic integrity and promote survival of the organism. Depending on DNA lesions and context, damaged cells with alarmed checkpoints can be eliminated by apoptosis or silenced by cellular senescence, or can survive and resume cell cycle progression upon checkpoint termination. Over the past two years a plethora of mechanistic studies have provided exciting insights into the biology and pathology of checkpoint initiation and signal propagation, and have revealed the various ways in which the response can be terminated: through recovery, adaptation or cancer-prone subversion. Such studies highlight the dynamic nature of these processes and help us to better understand the molecular basis, spatiotemporal orchestration and biological significance of the DNA damage response in normal and cancerous cells.  相似文献   

6.
In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).  相似文献   

7.
Filter elution was used to compare X-ray-induced DNA single- and double-strand breaks in proliferating (P) and quiescent (Q) cells of the 66 and 67 mouse mammary tumor lines. There was no difference either between cell type or between growth states in the amount of single-strand breaks as defined by elution at pH 12.2. In contrast, Q cells appeared to sustain a much larger amount of double-strand break damage per Gray than P cells, when the damage was measured by elution at either pH 7.2 or pH 9.6. Experiments which combined centrifugal elutriation with pH 7.2 elution demonstrated that G1-P cells were similar to Q (greater than or equal to 95% G1) cells in the induction of elution-detectable double-strand breaks, while the S-phase enriched fractions sustained less damage than G1-P, Q, or asynchronous P populations. Studies in which P populations were pulse labeled with [14C]thymidine confirmed this finding. Mathematical analysis of the elution kinetics of irradiated P, Q, and S-phase cells supports a model in which the complex elution profiles observed for P cells could be explained as the sum of the one-component exponential elution profiles of G1- and S-phase subpopulations. Also, the correlation between damage measured by pH 7.2 elution and cell survival was tested by examining the dose response for stimulated 66 cells (St4), which like Q cells are greater than or equal to 95% in G1 but are more resistant to X-ray-induced cytotoxicity than are the 66 Q cells. However, the induction of double-strand breaks in St4 cells was identical to that in Q cells. Thus we conclude that there is not necessarily a correlation between the amount of elution-detectable X-ray-induced double-strand breaks and cell survival.  相似文献   

8.
DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.  相似文献   

9.
Cell cycle activation linked to neuronal cell death initiated by DNA damage   总被引:15,自引:0,他引:15  
Increasing evidence indicates that neurodegeneration involves the activation of the cell cycle machinery in postmitotic neurons. However, the purpose of these cell cycle-associated events in neuronal apoptosis remains unknown. Here we tested the hypothesis that cell cycle activation is a critical component of the DNA damage response in postmitotic neurons. Different genotoxic compounds (etoposide, methotrexate, and homocysteine) induced apoptosis accompanied by cell cycle reentry of terminally differentiated cortical neurons. In contrast, apoptosis initiated by stimuli that do not target DNA (staurosporine and colchicine) did not initiate cell cycle activation. Suppression of the function of ataxia telangiectasia mutated (ATM), a proximal component of DNA damage-induced cell cycle checkpoint pathways, attenuated both apoptosis and cell cycle reentry triggered by DNA damage but did not change the fate of neurons exposed to staurosporine and colchicine. Our data suggest that cell cycle activation is a critical element of the DNA damage response of postmitotic neurons leading to apoptosis.  相似文献   

10.
Free radical-induced damage to DNA: mechanisms and measurement   总被引:25,自引:0,他引:25  
Free radicals are produced in cells by cellular metabolism and by exogenous agents. These species react with biomolecules in cells, including DNA. The resulting damage to DNA, which is also called oxidative damage to DNA, is implicated in mutagenesis, carcinogenesis, and aging. Mechanisms of damage involve abstractions and addition reactions by free radicals leading to carbon-centered sugar radicals and OH- or H-adduct radicals of heterocyclic bases. Further reactions of these radicals yield numerous products. Various analytical techniques exist for the measurement of oxidative damage to DNA. Techniques that employ gas chromatography (GC) or liquid chromatography (LC) with mass spectrometry (MS) simultaneously measure numerous products, and provide positive identification and accurate quantification. The measurement of multiple products avoids misleading conclusions that might be drawn from the measurement of a single product, because product levels vary depending on reaction conditions and the redox status of cells. In the past, GC/MS was used for the measurement of modified sugar and bases, and DNA-protein cross-links. Recently, methodologies using LC/tandem MS (LC/MS/MS) and LC/MS techniques were introduced for the measurement of modified nucleosides. Artifacts might occur with the use of any of the measurement techniques. The use of proper experimental conditions might avoid artifactual formation of products in DNA. This article reviews mechanistic aspects of oxidative damage to DNA and recent developments in the measurement of this type of damage using chromatographic and mass spectrometric techniques.  相似文献   

11.
Iwamoto K  Hamada H  Eguchi Y  Okamoto M 《Bio Systems》2011,103(3):384-391
After DNA damage, cells activate p53, a tumor suppressor gene, and select a cell fate (e.g., DNA repair, cell cycle arrest, or apoptosis). Recently, a p53 oscillatory behavior was observed following DNA damage. However, the relationship between this p53 oscillation and cell-fate selection is unclear. Here, we present a novel model of the DNA damage signaling pathway that includes p53 and whole cell cycle regulation and explore the relationship between p53 oscillation and cell fate selection. The simulation run without DNA damage qualitatively realized experimentally observed data from several cell cycle regulators, indicating that our model was biologically appropriate. Moreover, the comprehensive sensitivity analysis for the proposed model was implemented by changing the values of all kinetic parameters, which revealed that the cell cycle regulation system based on the proposed model has robustness on a fluctuation of reaction rate in each process. Simulations run with four different intensities of DNA damage, i.e. Low-damage, Medium-damage, High-damage, and Excess-damage, realized cell cycle arrest in all cases. Low-damage, Medium-damage, High-damage, and Excess-damage corresponded to the DNA damage caused by 100, 200, 400, and 800 J/m2 doses of UV-irradiation, respectively, based on expression of p21, which plays a crucial role in cell cycle arrest. In simulations run with High-damage and Excess-damage, the length of the cell cycle arrest was shortened despite the severe DNA damage, and p53 began to oscillate. Cells initiated apoptosis and were killed at 400 and 800 J/m2 doses of UV-irradiation, corresponding to High-damage and Excess-damage, respectively. Therefore, our model indicated that the oscillatory mode of p53 profoundly affects cell fate selection.  相似文献   

12.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

13.
RAD24 and RFC5 are required for DNA damage checkpoint control in the budding yeast Saccharomyces cerevisiae. Rad24 is structurally related to replication factor C (RFC) subunits and associates with RFC subunits Rfc2, Rfc3, Rfc4, and Rfc5. rad24Delta mutants are defective in all the G(1)-, S-, and G(2)/M-phase DNA damage checkpoints, whereas the rfc5-1 mutant is impaired only in the S-phase DNA damage checkpoint. Both the RFC subunits and Rad24 contain a consensus sequence for nucleoside triphosphate (NTP) binding. To determine whether the NTP-binding motif is important for Rad24 function, we mutated the conserved lysine(115) residue in this motif. The rad24-K115E mutation, which changes lysine to glutamate, confers a complete loss-of-function phenotype, while the rad24-K115R mutation, which changes lysine to arginine, shows no apparent phenotype. Although neither rfc5-1 nor rad24-K115R single mutants are defective in the G(1)- and G(2)/M-phase DNA damage checkpoints, rfc5-1 rad24-K115R double mutants become defective in these checkpoints. Coimmunoprecipitation experiments revealed that Rad24(K115R) fails to interact with the RFC proteins in rfc5-1 mutants. Together, these results indicate that RFC5, like RAD24, functions in all the G(1)-, S- and G(2)/M-phase DNA damage checkpoints and suggest that the interaction of Rad24 with the RFC proteins is essential for DNA damage checkpoint control.  相似文献   

14.
After the generation of DNA double-strand breaks (DSBs), poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins to be recruited and activated through its binding to the free DNA ends. Upon activation, PARP-1 uses NAD+ to generate large amounts of poly(ADP-ribose) (PAR), which facilitates the recruitment of DNA repair factors. Here, we identify the RNA-binding protein NONO, a partner protein of SFPQ, as a novel PAR-binding protein. The protein motif being primarily responsible for PAR-binding is the RNA recognition motif 1 (RRM1), which is also crucial for RNA-binding, highlighting a competition between RNA and PAR as they share the same binding site. Strikingly, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR, generated by activated PARP-1. Furthermore, we show that upon PAR-dependent recruitment, NONO stimulates nonhomologous end joining (NHEJ) and represses homologous recombination (HR) in vivo. Our results therefore place NONO after PARP activation in the context of DNA DSB repair pathway decision. Understanding the mechanism of action of proteins that act in the same pathway as PARP-1 is crucial to shed more light onto the effect of interference on PAR-mediated pathways with PARP inhibitors, which have already reached phase III clinical trials but are until date poorly understood.  相似文献   

15.
Cell progression after selective irradiation of DNA during the cell cycle   总被引:1,自引:0,他引:1  
Chinese hamster ovary cells were labeled with [125I]iododeoxyuridine (125IUdR, 0.1184 MBq/ml for 20 min) and the labeled mitotic cells were collected by selective detachment ("mitotic shake off"). The cells were pooled, plated into replicate flasks, and allowed to progress through the cell cycle. At several times after plating, corresponding to G1, S, late S, and G2 plus M, cells were cooled to stop cell cycle progression and to facilitate accumulation of 125I decays. Evaluation of cell progression into the subsequent mitosis indicated that accumulation of additional 125I decays during G1 or S phase was eight to nine times less effective in inducing progression delay than decays accumulated during G2. The results support our previous hypothesis that DNA damage per se is not responsible for radiation-induced progression delay. Instead, 125I-labeled DNA appears to act as a source of radiation that associates during the G2 phase of the cell cycle with another radiosensitive structure in the cell nucleus, and damage to the latter structure by overlap irradiation is responsible for progression delay (M. H. Schneiderman and K. G. Hofer, Radiat. Res. 84, 462-476 (1980].  相似文献   

16.
Michael WM 《Current biology : CB》2001,11(11):R443-R445
Checkpoints have been a staple of eukaryotic cell cycle research for the past decade, but little is known about checkpoints in prokaryotes. New work on sporulation in Bacillus fills that gap by showing that such control systems function to coordinate aspects of the bacterial cell cycle.  相似文献   

17.
Chloroethylnitrosureas (CNUs) are powerful DNA-reactive alkylating agents used in cancer therapy. Here, we analyzed cyto- and genotoxicity of nimustine (ACNU), a representative of CNUs, in synchronized cells and in cells deficient in repair proteins involved in homologous recombination (HR) or nonhomologous end-joining (NHEJ). We show that HR mutants are extremely sensitive to ACNU, as measured by colony formation, induction of apoptosis and chromosomal aberrations. The NHEJ mutants differed in their sensitivity, with Ku80 mutants being moderately sensitive and DNA-PKcs mutated cells being resistant. HR mutated cells displayed a sustained high level of γH2AX foci and displayed co-staining with Rad51 and 53BP1, indicating DNA double-strand breaks (DSB) to be formed. Using synchronized cells, we analyzed whether DSB formation after ACNU treatment was replication-dependent. We show that γH2AX foci were not induced in G1 but increased significantly in S phase and remained at a high level in G2, where a fraction of cells became arrested and underwent, with a delay of > 12 h, cell death by apoptosis and necrosis. Rad51, ATM, MDC-1 and RPA-2 foci were also formed and shown to co-localize with γH2AX foci induced in S phase, indicating that the DNA damage response was activated. All effects observed were abrogated by MGMT, which repairs O6-chloroethylguanine that is converted into DNA cross-links. We deduce that the major genotoxic and killing lesion induced by CNUs are O6-chloroethylguanine-triggered cross-links, which give rise to DSBs in the treatment cell cycle, and that HR, but not NHEJ, is the major route of protection against this group of anticancer drugs. Base excision repair had no significant impact on ACNU-induced cytotoxicity.  相似文献   

18.
19.
The DNA damage response: making it safe to play with knives   总被引:7,自引:0,他引:7  
Damage to our genetic material is an ongoing threat to both our ability to faithfully transmit genetic information to our offspring as well as our own survival. To respond to these threats, eukaryotes have evolved the DNA damage response (DDR). The DDR is a complex signal transduction pathway that has the ability to sense DNA damage and transduce this information to the cell to influence cellular responses to DNA damage. Cells possess an arsenal of enzymatic tools capable of remodeling and repairing DNA; however, their activities must be tightly regulated in a temporal, spatial, and DNA lesion-appropriate fashion to optimize repair and prevent unnecessary and potentially deleterious alterations in the structure of DNA during normal cellular processes. This review will focus on how the DDR controls DNA repair and the phenotypic consequences of defects in these critical regulatory functions in mammals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号