首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmids, DNA (or rarely RNA) molecules which replicate in cells autonomously (independently of chromosomes) as non-essential genetic elements, play important roles for microbes grown under specific environmental conditions as well as in scientific laboratories and in biotechnology. For example, bacterial plasmids are excellent models in studies on regulation of DNA replication, and their derivatives are the most commonly used vectors in genetic engineering. Detailed mechanisms of replication initiation, which is the crucial process for efficient maintenance of plasmids in cells, have been elucidated for several plasmids. However, to understand plasmid biology, it is necessary to understand regulation of plasmid DNA replication in response to different environmental conditions in which host cells exist. Knowledge of such regulatory processes is also very important for those who use plasmids as expression vectors to produce large amounts of recombinant proteins. Variable conditions in large-scale fermentations must influence replication of plasmid DNA in cells, thus affecting the efficiency of recombinant gene expression significantly. Contrary to extensively investigated biochemistry of plasmid replication, molecular mechanisms of regulation of plasmid DNA replication in response to various environmental stress conditions are relatively poorly understood. There are, however, recently published studies that add significant data to our knowledge on relations between cellular stress responses and control of plasmid DNA replication. In this review we focus on plasmids derived from bacteriophage lambda that are among the best investigated replicons. Nevertheless, recent results of studies on other plasmids are also discussed shortly.  相似文献   

2.
Fifty years after the Replicon Theory was originally presented, detailed mechanistic insight into prokaryotic replicons has been obtained and rapid progress is being made to elucidate the more complex regulatory mechanisms of replicon regulation in eukaryotic cells. Here, I present my personal perspectives on how studies of model replicons have contributed to our understanding of the basic mechanisms of DNA replication as well as the evolution of replication regulation in human cells. I will also discuss how replication regulation contributes to the stable maintenance of the genome and how disruption of replication regulation leads to human diseases.  相似文献   

3.
The complete and faithful duplication of the genome is an essential prerequisite for proliferating cells to maintain genome integrity. This objective is greatly challenged by DNA damage encountered during replication, which causes fork stalling and in certain cases, fork breakage. DNA damage tolerance (DDT) pathways mitigate the effects on fork stability induced by replication fork stalling by mediating damage-bypass and replication fork restart. These DDT mechanisms, largely relying on homologous recombination (HR) and specialized polymerases, can however contribute to genome rearrangements and mutagenesis. There is a profound connection between replication and recombination: recombination proteins protect replication forks from nuclease-mediated degradation of the nascent DNA strands and facilitate replication completion in cells challenged by DNA damage. Moreover, in case of fork collapse and formation of double strand breaks (DSBs), the recombination factors present or recruited to the fork facilitate HR-mediated DSB repair, which is primarily error-free. Disruption of HR is inexorably linked to genome instability, but the premature activation of HR during replication often leads to genome rearrangements. Faithful replication necessitates the downregulation of HR and disruption of active RAD51 filaments at replication forks, but upon persistent fork stalling, building up of HR is critical for the reorganization of the replication fork and for filling-in of the gaps associated with discontinuous replication induced by DNA lesions. Here we summarize and reflect on our understanding of the mechanisms that either suppress recombination or locally enhance it during replication, and the principles that underlie this regulation.  相似文献   

4.
Type II topoisomerases are essential for resolving topologically entwined double-stranded DNA. Although anti-topoisomerase 2 (Top2) drugs are clinically important antibiotics and chemotherapies, to our knowledge, the mechanisms of cell killing by Top2 depletion and inactivation have never been directly compared. We show that depletion of Top2 protein from budding yeast cells prevents DNA decatenation during S phase. Cells complete DNA replication and enter the ensuing mitosis on schedule, suffering extensive chromosome missegregation. Cytokinesis through incompletely segregated chromosomes causes lethal DNA damage. By contrast, expression of catalytically inactive Top2 causes a stable G2 arrest requiring an intact DNA damage checkpoint. Checkpoint activation correlates with an inability to complete DNA replication, resulting in hypercatenated, gapped daughter DNA molecules. Thus, Top2 depletion and inactivation kill cells by different mechanisms, which has implications for understanding the nature of the catenation checkpoint, how DNA replication terminates, how anti-Top2 drugs work, and how new drugs might be designed.  相似文献   

5.
Genome amplification (DNA synthesis) is one of the most demanding cellular processes in all proliferative cells. The DNA replication machinery (also known as the replisome) orchestrates genome amplification during S-phase of the cell cycle. Genetic material is particularly vulnerable to various events that can challenge the replisome during its assembly, activation (firing), progression (elongation) and disassembly from chromatin (termination). Any disturbance of the replisome leads to stalling of the DNA replication fork and firing of dormant replication origins, a process known as DNA replication stress. DNA replication stress is considered to be one of the main causes of sporadic cancers and other pathologies related to tissue degeneration and ageing. The mechanisms of replisome assembly and elongation during DNA synthesis are well understood. However, once DNA synthesis is complete, the process of replisome disassembly, and its removal from chromatin, remains unclear. In recent years, a growing body of evidence has alluded to a central role in replisome regulation for the ubiquitin-dependent protein segregase p97, also known as valosin-containing protein (VCP) in metazoans and Cdc48 in lower eukaryotes. By orchestrating the spatiotemporal turnover of the replisome, p97 plays an essential role in DNA replication. In this review, we will summarise our current knowledge about how p97 controls the replisome from replication initiation, to elongation and finally termination. We will also further examine the more recent findings concerning the role of p97 and how mutations in p97 cofactors, also known as adaptors, cause DNA replication stress induced genomic instability that leads to cancer and accelerated ageing. To our knowledge, this is the first comprehensive review concerning the mechanisms involved in the regulation of DNA replication by p97.  相似文献   

6.
One of the fundamental challenges facing the cell is to accurately copy its genetic material to daughter cells. When this process goes awry, genomic instability ensues in which genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Organisms have developed multiple mechanisms that can be classified into two major classes to ensure the fidelity of DNA replication. The first class includes mechanisms that prevent premature initiation of DNA replication and ensure that the genome is fully replicated once and only once during each division cycle. These include cyclin-dependent kinase (CDK)-dependent mechanisms and CDK-independent mechanisms. Although CDK-dependent mechanisms are largely conserved in eukaryotes, higher eukaryotes have evolved additional mechanisms that seem to play a larger role in preventing aberrant DNA replication and genome instability. The second class ensures that cells are able to respond to various cues that continuously threaten the integrity of the genome by initiating DNA-damage-dependent “checkpoints” and coordinating DNA damage repair mechanisms. Defects in the ability to safeguard against aberrant DNA replication and to respond to DNA damage contribute to genomic instability and the development of human malignancy. In this article, we summarize our current knowledge of how genomic instability arises, with a particular emphasis on how the DNA replication process can give rise to such instability.In eukaryotes, DNA replication initiates from hundreds of thousands of replication sites, termed origins of DNA replication (Leonard and Méchali 2013). Not only do cells need to initiate and terminate DNA replication at the right time during S phase, they must do so only once, at each of these replication origins, during each division cycle (Machida et al. 2005). Mechanisms that govern the initiation of DNA replication in eukaryotes are described in full detail in Bell and Kaguni (2013) and Tanaka and Araki (2013), whereas those that regulate DNA replication are described in Siddiqui et al. (2013) and Zielke et al. (2013). Rhind and Gilbert’s (2013) work is dedicated to the mechanisms that control the timing of DNA replication. Here we focus on the mechanisms that prevent aberrant DNA replication.Perturbations in DNA replication present cells with significant challenges. On one hand, incomplete genome duplication leads to cell inviability or, if cells survive, to aneuploidy. On the other hand, failure to restrict origin firing to once per replication origin per cell cycle, leads to overreplication. Reinitiation of DNA replication from the same origins of replication before the completion of S phase, commonly referred to as rereplication, is often associated with genome instability owing to the accumulation of replication intermediates, collapsed replication forks, and chromosomal breakages. In addition, defects in cytokinesis or mitotic regulation may lead to the complete reduplication of the genome. This latter process is reminiscent of endoreduplication, a physiological process that occurs in many metazoans during normal development and is characterized by multiple, discrete, and complete rounds of S phases without intervening mitosis. Finally, reinitiation of DNA replication from specific genomic loci is thought to be responsible for gene amplifications but the mechanisms underlying gene amplification are poorly understood.How do these various mechanisms of genomic instability relate to cancer? An increase of copy number of chromosomes or genes allows cells to overexpress certain genes or mutate the extra copies to acquire growth, survival, or metastasis advantage. Equally important is the excessive DNA damage that is associated with these problems in DNA replication. When a cell attempts to segregate an underreplicated chromosome between two daughter cells, the result is often broken chromosomes and aneuploidy. Conversely, overreplication is marked by excessive DNA damage from collapsed replication forks. The repair processes are not perfect and so any increase in DNA damage leads to increased mutagenesis, and thus activation of oncogenes or inactivation of tumor suppressor genes, fueling malignant transformation and progression.  相似文献   

7.
The S‐phase checkpoint is a surveillance mechanism, mediated by the protein kinases Mec1 and Rad53 in the budding yeast Saccharomyces cerevisiae (ATR and Chk2 in human cells, respectively) that responds to DNA damage and replication perturbations by co‐ordinating a global cellular response necessary to maintain genome integrity. A key aspect of this response is the stabilization of DNA replication forks, which is critical for cell survival. A defective checkpoint causes irreversible replication‐fork collapse and leads to genomic instability, a hallmark of cancer cells. Although the precise mechanisms by which Mec1/Rad53 maintain functional replication forks are currently unclear, our knowledge about this checkpoint function has significantly increased during the last years. Focusing mainly on the advances obtained in S. cerevisiae, the present review will summarize our understanding of how the S‐phase checkpoint preserves the integrity of DNA replication forks and discuss the most recent findings on this topic.  相似文献   

8.
Our studies have revealed that replicating DNA is more vulnerable to adduction than is non-replicating DNA. Contrary to our expectations that the vulnerability to neoplastic transformation induced by carcinogens in synchronized cells would parallel the rate of DNA replication, we actually found that the vulnerability was notably increased early in the S phase and more closely paralleled the rate of entry of cells into the S phase (the very beginning of S phase) rather than the overall rate of DNA synthesis. From these findings we hypothesized that there were targets for the neoplastic transformation of cells that were among the earliest replicated sequences in the genome. To test that this hypothesis was plausible we investigated the temporal order of DNA replication during the S phase and showed that the order of DNA replication was far more precisely defined than had been recognized previously. The cell synchronization techniques that made those findings possible made it feasible to demonstrate that only a relatively few sites of DNA replication are identifiable in chromosomal bands at the earliest times in the S phase. The same synchronization techniques enabled us to label DNA replicated when populations of cells were very early in S phase and to isolate and clone this DNA. The clonal elements of this library of DNA prepared in this manner have been sequenced and mapped to the human genome. Efforts are in progress to characterize the genes and sequence features associated with these regions. We have utilized methods to identify and characterize origins of DNA replication as a means of locating the earliest replicating part of these early replicating regions. We have identified several new origins of DNA replication that are activated early and late in the S phase but the features of the chromatin at the origin that determines its time of activation remain obscure. In an effort to improve our ability to identify more origins, particularly adjacent origins in genomic regions, we have combined the methods of DNA combing and FISH analysis of combed DNA to search for DNA precursor incorporation patterns characteristic of origins of DNA replication. Preliminary nascent strand abundance studies appear to have proven the existence of two origins of DNA replication predicted from the precursor incorporation studies. We have found that the combed DNA techniques can be combined with precursor incorporation studies and antibodies to sites of DNA damage to address questions of mechanisms of DNA damage and repair. For example these studies have shown recently that DNA damage is not randomly distributed in the genome and that both inhibition of replicon initiation and inhibition of strand elongation are separately distinguishable as components of the S checkpoint function.It is our hope and expectation that these results and the opportunities that they provide for future studies will enable us to identify possible targets for malignant transformation that explain our observation that cells at the start of S phase are vulnerable to the initiation of carcinogenesis.  相似文献   

9.
The S phase checkpoint pathway preserves genome stability by protecting defective DNA replication forks, but the underlying mechanisms are still understood poorly. Previous work with budding yeast suggested that the checkpoint kinases Mec1 and Rad53 might prevent collapse of the replisome when nucleotide concentrations are limiting, thereby allowing the subsequent resumption of DNA synthesis. Here we describe a direct analysis of replisome stability in budding yeast cells lacking checkpoint kinases, together with a high-resolution view of replisome progression across the genome. Surprisingly, we find that the replisome is stably associated with DNA replication forks following replication stress in the absence of Mec1 or Rad53. A component of the replicative DNA helicase is phosphorylated within the replisome in a Mec1-dependent manner upon replication stress, and our data indicate that checkpoint kinases control replisome function rather than stability, as part of a multifaceted response that allows cells to survive defects in chromosome replication.  相似文献   

10.
Tourrière H  Pasero P 《DNA Repair》2007,6(7):900-913
S phase is a period of great vulnerability for the genome of eukaryotic cells. Many complicated processes are undertaken during this critical phase of the cell cycle, including the complete unwinding and the duplication of enormously complex DNA molecules. During this process, replication forks frequently encounter obstacles that impede their progression. Arrested forks are unstable structures that have to be stabilized and restarted in order to prevent the formation of double-strand breaks and/or unscheduled homologous recombination. To this aim, cells have evolved complex surveillance mechanisms sensing DNA damage and replication stress. The past decade has seen a dramatic advance in our understanding of how these regulatory pathways act in response to exogenous replication stress. However, the mechanism by which fork integrity is maintained at natural replication-impeding sequences remains obscure. Here, we discuss recent findings about how checkpoint-dependent and -independent mechanisms cooperate to prevent genomic instability at stalled forks, both in normal S phase and in the presence of exogenous genotoxic stress.  相似文献   

11.
Regulating mammalian checkpoints through Cdc25 inactivation   总被引:11,自引:0,他引:11       下载免费PDF全文
Precise monitoring of DNA replication and chromosome segregation ensures that there is accurate transmission of genetic information from a cell to its daughters. Eukaryotic cells have developed a complex network of checkpoint pathways that sense DNA lesions and defects in chromosome segregation, spindle assembly and the centrosome cycle, leading to an inhibition of cell-cycle progression for the time required to remove the defect and thus preventing genomic instability. The activation of checkpoints that are responsive to DNA damage or incomplete DNA replication ultimately results in the inhibition of cyclin-dependent kinases. This review focuses on our understanding of the biochemical mechanisms that specifically inactivate Cdc25 (cell division cycle 25) phosphatases to achieve this. The evidence for links between checkpoint deregulation and oncogenesis is discussed.  相似文献   

12.
13.
Mechanisms that preserve genome integrity are highly important during the normal life cycle of human cells. Loss of genome protective mechanisms can lead to the development of diseases such as cancer. Checkpoint kinases function in the cellular surveillance pathways that help cells to cope with DNA damage. Importantly, the checkpoint kinases ATR, CHK1 and WEE1 are not only activated in response to exogenous DNA damaging agents, but are active during normal S phase progression. Here, we review recent evidence that these checkpoint kinases are critical to avoid deleterious DNA breakage during DNA replication in normal, unperturbed cell cycle. Possible mechanisms how loss of these checkpoint kinases may cause DNA damage in S phase are discussed. We propose that the majority of DNA damage is induced as a consequence of deregulated CDK activity that forces unscheduled initiation of DNA replication. This could generate structures that are cleaved by DNA endonucleases leading to the formation of DNA double-strand breaks. Finally, we discuss how these S phase effects may impact on our understanding of cancer development following disruption of these checkpoint kinases, as well as on the potential of these kinases as targets for cancer treatment.  相似文献   

14.
15.
DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)–mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammalian cells when the ATR checkpoint is intact. We also demonstrate that single-stranded DNA (ssDNA) is the initial signal that activates the checkpoint when licensing control is compromised in mammalian cells. We demonstrate that uncontrolled DNA unwinding by minichromosome maintenance proteins upon Cdt1 overexpression is an important mechanism that leads to ssDNA accumulation and checkpoint activation. Furthermore, we show that replication protein A 2 and retinoblastoma protein are both downstream targets for ATR that are important for the inhibition of DNA rereplication. We reveal the molecular mechanisms by which the ATR-mediated S phase checkpoint pathway prevents DNA rereplication and thus significantly improve our understanding of how rereplication is prevented in mammalian cells.  相似文献   

16.
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.  相似文献   

17.
In Escherichia coli, initiation of chromosomal replication is activated by a nucleoprotein complex formed primarily between the DnaA protein and oriC (replication origin) DNA. After replicational initiation, this complex has to be inactivated in order to repress the appearance of initiation events until the next scheduled round of initiation. Studies of the mechanisms responsible for this repression have recently revealed direct coupling between these mechanisms and key elements of the replication process, suggesting that feedback-type regulatory loops exist between the factors implicated in initiation and the elements yielded by the replication process. The loading of the ring-shaped beta-subunit of DNA polymerase III onto DNA plays a key role in the inactivation of the DnaA protein. Duplication of oriC DNA results in hemimethylated DNA, which is inert for reinitiation. Titration of large amounts of DnaA protein to a non-oriC locus can repress untimely initiations, and timely duplication of this locus is required for this repression in rapidly growing cells. All these systems functionally complement one another to ensure the maintenance of the interinitiation interval between two normal DNA replication cycles. The mechanisms that link the replication cycle to the progression of the cell cycle are also discussed.  相似文献   

18.
Gunjan A  Paik J  Verreault A 《Biochimie》2005,87(7):625-635
Histone deposition onto nascent DNA is the first step in the process of chromatin assembly during DNA replication. The process of nucleosome assembly represents a daunting task for S-phase cells, partly because cells need to rapidly package nascent DNA into nucleosomes while avoiding the generation of excess histones. Consequently, cells have evolved a number of nucleosome assembly factors and regulatory mechanisms that collectively function to coordinate the rates of histone and DNA synthesis during both normal cell cycle progression and in response to conditions that interfere with DNA replication.  相似文献   

19.
Inhibition of DNA methyltransferase inhibits DNA replication   总被引:8,自引:0,他引:8  
Ectopic expression of DNA methyltransferase transforms vertebrate cells, and inhibition of DNA methyltransferase reverses the transformed phenotype by an unknown mechanism. We tested the hypothesis that the presence of an active DNA methyltransferase is required for DNA replication in human non-small cell lung carcinoma A549 cells. We show that the inhibition of DNA methyltransferase by two novel mechanisms negatively affects DNA synthesis and progression through the cell cycle. Competitive polymerase chain reaction of newly synthesized DNA shows decreased origin activity at three previously characterized origins of replication following DNA methyltransferase inhibition. We suggest that the requirement of an active DNA methyltransferase for the functioning of the replication machinery has evolved to coordinate DNA replication and inheritance of the DNA methylation pattern.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号