首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how cyclin-cdk complexes recognize their substrates is a central problem in cell cycle biology. We identified an E2F1-derived eight-residue peptide which blocked the binding of cyclin A and E-cdk2 complexes to E2F1 and p21. Short peptides spanning similar sequences in p107, p130, and p21-like cdk inhibitors likewise bound to cyclin A-cdk2 and cyclin E-cdk2. In addition, these peptides promoted formation of stable cyclin A-cdk2 complexes in vitro but inhibited the phosphorylation of the retinoblastoma protein by cyclin A- but not cyclin B-associated kinases. Mutation of the cyclin-cdk2 binding motifs in p107 and E2F1 likewise prevented their phosphorylation by cyclin A-associated kinases in vitro. The cdk inhibitor p21 was found to contain two functional copies of this recognition motif, as determined by in vitro kinase binding/inhibition assays and in vivo growth suppression assays. Thus, these studies have identified a cyclin A- and E-cdk2 substrate recognition motif. Furthermore, these data suggest that p21-like cdk inhibitors function, at least in part, by blocking the interaction of substrates with cyclin-cdk2 complexes.  相似文献   

2.
Cyclin-dependent kinases (CDKs) are essential for regulating key transitions in the cell cycle, including initiation of DNA replication, mitosis and prevention of re-replication. Here we demonstrate that mammalian CDC6, an essential regulator of initiation of DNA replication, is phosphorylated by CDKs. CDC6 interacts specifically with the active Cyclin A/CDK2 complex in vitro and in vivo, but not with Cyclin E or Cyclin B kinase complexes. The cyclin binding domain of CDC6 was mapped to an N-terminal Cy-motif that is similar to the cyclin binding regions in p21(WAF1/SDI1) and E2F-1. The in vivo phosphorylation of CDC6 was dependent on three N-terminal CDK consensus sites, and the phosphorylation of these sites was shown to regulate the subcellular localization of CDC6. Consistent with this notion, we found that the subcellular localization of CDC6 is cell cycle regulated. In G1, CDC6 is nuclear and it relocalizes to the cytoplasm when Cyclin A/CDK2 is activated. In agreement with CDC6 phosphorylation being specifically mediated by Cyclin A/CDK2, we show that ectopic expression of Cyclin A, but not of Cyclin E, leads to rapid relocalization of CDC6 from the nucleus to the cytoplasm. Based on our data we suggest that the phosphorylation of CDC6 by Cyclin A/CDK2 is a negative regulatory event that could be implicated in preventing re-replication during S phase and G2.  相似文献   

3.
Human adenovirus E1A proteins and oncogene products of several other DNA tumour viruses derive much of their oncogenic potential from interactions with cellular polypeptides. E1A proteins form complexes with p105Rb and a related p107 polypeptide, and with at least three other proteins (p60cycA, p130, and p300); all may be required for cell transformation. Using a series of E1A deletion mutants, we have carried out a quantitative analysis of the binding patterns of cellular proteins to E1A products. Binding of most of the proteins was affected at least partially by mutations within the amino terminal 25 residues, amino acids 36-69 within conserved region 1 (CR1), and residues 121-138 in conserved region 2 (CR2). However, the specific binding characteristics of each protein varied considerably. p300 was the only species for which binding was totally eliminated by deletions at the amino terminus. Removal of regions within CR1 eliminated binding of all species except p107 and p60cycA. Deletion of portions of CR2 reduced or eliminated binding of all proteins except p300. Thus, whereas cellular polypeptides generally were found to interact with the same three regions of E1A proteins, specific interactions varied considerably.  相似文献   

4.
Staurosporine was found to bring about complete growth inhibition of human glioma cell lines. U87 MG cells were arrested in S phase while U373 MG cells in G2/M phase on staurosporine treatment. Consistent with this observation, no change in G1 phase regulators viz., Cyclin D1, D3 and CDK4 was seen on staurosporine treatment. The levels of CDK2, CDC2, Cyclin A and Cyclin B proteins decreased, while the levels of CDK inhibitors viz., p21 and p27 were found to increase on staurosporine treatment. The mRNA levels of CDK2 and CDC2 genes were also found to decrease on staurosporine treatment. Thus apart from staurosporine’s known direct inhibitory effect on CDK2 and CDC2 activities, staurosporine was found to down-regulate activities of these two kinases by modulating the expression of the kinases themselves as well that of their activating partners (Cyclins) and their inhibitors.  相似文献   

5.
Cyclin-dependent kinase 1 (CDK1) is a major M-phase kinase which requires the binding to a regulatory protein, Cyclin B, to be active. CDK1/Cyclin B complex is called M-phase promoting factor (MPF) for its key role in controlling both meiotic and mitotic M-phase of the cell cycle. CDK1 inactivation is necessary for oocyte activation and initiation of embryo development. This complex process requires both Cyclin B polyubiquitination and proteosomal degradation via the ubiquitin-conjugation pathway, followed by the dephosphorylation of the monomeric CDK1 on Thr161. Previous proteomic analyses revealed a number of CDK1-associated proteins in human HeLa cells. It is, however, unknown whether specific partners are involved in CDK1 inactivation upon M-phase exit. To better understand CDK1 regulation during MII-arrest and oocyte activation, we immunoprecipitated (IPed) CDK1 together with its associated proteins from M-phase-arrested and M-phase-exiting Xenopus laevis oocytes. A mass spectrometry (MS) analysis revealed a number of new putative CDK1 partners. Most importantly, the composition of the CDK1-associated complex changed rapidly during M-phase exit. Additionally, an analysis of CDK1 complexes precipitated with beads covered with p9 protein, a fission yeast suc1 homologue well known for its high affinity for CDKs, was performed to identify the most abundant proteins associated with CDK1. The screen was auto-validated by identification of: (i) two forms of CDK1: Cdc2A and B, (ii) a set of Cyclins B with clearly diminishing number of peptides identified upon M-phase exit, (iii) a number of known CDK1 substrates (e.g. peroxiredoxine) and partners (e.g. HSPA8, a member of the HSP70 family) both in IP and in p9 precipitated pellets. In IP samples we also identified chaperones, which can modulate CDK1 three-dimensional structure, as well as calcineurin, a protein necessary for successful oocyte activation. These results shed a new light on CDK1 regulation via a dynamic change in the composition of the protein complex upon M-phase exit and the oocyte to embryo transition.  相似文献   

6.
细胞周期蛋白是调控真核细胞有丝分裂时相的一类蛋白质,在肿瘤细胞的分裂增殖活动中同样起到十分重要的调控作用。在结直肠癌中,细胞周期蛋白的异常表达和调节失控十分常见。在结直肠癌相关周期蛋白的研究中,关于细胞周期蛋白Cyclin D1的研究最深入,可作为结直肠癌的一项诊断指标并作为其增殖程度的监测。近年来,随着周期蛋白Cyclin E、B1和周期蛋白依赖激酶Cdk1、Cdk4以及p21等在结直肠癌发生发展中的作用陆续得到一系列相关实验的初步证实,结直肠癌的研究不断向前推进,细胞周期蛋白必将为结直肠癌的治疗提供新的靶点。本文主要从细胞周期蛋白在结直肠癌中的表达、治疗效果这2个方面,介绍近年来结直肠癌相关周期蛋白的研究进展。  相似文献   

7.
Analysis of wild-type and mutant p21WAF-1 gene activities.   总被引:14,自引:6,他引:8       下载免费PDF全文
The p21WAF-1 gene is positively regulated by the wild-type p53 protein. p21WAF-1 has been shown to interact with several cyclin-dependent kinase complexes and block the activity of G1 cyclin-dependent kinases (cdks). Mutational analysis with the p21WAF-1 gene localized a site, at amino acid residues 21 and 24 in the amino terminus of the protein, for p21WAF-1 binding to cyclins D and E. This region of the protein is conserved (residues 21 to 26) in other p21WAF-1 family members, p27kip-1 and p57kip-2. The same p21WAF-121,24 mutant also fails to bind to cyclin D1-cdk 4 or cyclin E-cdk 2 complexes in vitro, suggesting that amino acid residues 21 and 24 are important for p21WAF-1-cdk-cyclin trimeric complex interactions. The p21WAF-1 wild-type protein will suppress tumor cell growth in culture while p21WAF-1 mutant proteins with defects in residues 21 and 24 fail to suppress tumor cell growth. The overexpression of cyclin D or E in these cells will partially overcome the growth suppression of wild-type p21WAF-1 protein in cells. These results provide evidence that p21WAF-1 acts through cyclin D1-cdk4 and cyclin E-cdk2 complexes in vivo to induce the growth suppression. The p21WAF-1 binding sites for cyclins (residues 21 to 26), cdk2 (residues 49 to 71), and proliferating-cell nuclear antigen (residues 124 to 164) have all been mapped to discrete sites on the protein.  相似文献   

8.
p27Kip1 is an essential cell cycle inhibitor of Cyclin-dependent kinases. Ubiquitin-mediated proteolysis of p27Kip1 is an important mechanism for activation of Cyclin E-Cdk2 and facilitates G1/S transition. Ubiquitination of p27 is primarily catalyzed by a multisubunit E3 ubiquitin ligase, SCF(Skp2), and requires an adapter protein Cks1. In addition, phosphorylation of p27 at Thr187 by Cyclin E and Cdk2 is also essential for triggering substrate ubiquitination. Here we investigate the molecular mechanism of p27 ubiquitination. We show that Cyclin E-Cdk2 is essential for targeting the p27 substrate to SCF(Skp2). Direct physical contact between Cyclin E but not Cdk2 and p27 is required for p27 recruitment to SCF(Skp2). In a search for positively charged amino acid residues that may be involved in recognition of the Thr187 phosphate group, we found that Arg306 of Skp2 is required for association and ubiquitination of phosphorylated p27 but dispensable for ubiquitination of unphosphorylated p21. Thus, our data unravel the molecular organization of the ubiquitination complex that catalyzes p27 ubiquitination and provide unique insights into the specificity of substrate recognition by SCF(Skp2).  相似文献   

9.
The identity of DNA replication proteins and cell cycle regulatory proteins which can be found in complexes involving PCNA were investigated by the use of PCNA immobilized on Sepharose 4B. A column containing bovine serum albumin (BSA) bound to Sepharose was used as a control. Fetal calf thymus extracts were chromatographed on PCNA-Sepharose and BSA-Sepharose. The columns were washed and then eluted with 0.5 M KCl. The salt eluates were examined for the presence of both DNA replication proteins (Pol alpha, delta, straightepsilon, PCNA, RFC, RFA, DNA ligase I, NDH II, Topo I and Topo II) and cell cycle proteins (Cyclins A, B1, D1, D2, D3, E, CDK2, CDK4, CDK5 and p21) by western blotting with specific antibodies. The DNA replication proteins which bound to PCNA-Sepharose included DNA polymerase delta and straightepsilon, PCNA, the 37 and 40 kDa subunits of RFC, the 70 kDa subunit of RPA, NDH II and topoisomerase I. No evidence for the binding of DNA polymerase alpha, DNA ligase I or topoisomerase II was obtained. Of the cell cycle proteins investigated, CDK2, CDK4 and CDK5 were bound. This study presents strong evidence that PCNA is a component of protein complexes containing DNA replication, repair and cell cycle regulatory proteins.  相似文献   

10.
The cell cycle is principally controlled by Cyclin Dependent Kinases (CDKs), whose oscillating activities are determined by binding to Cyclin coactivators. Cyclins exhibit dynamic changes in abundance as cells pass through the cell cycle. The sequential, timed accumulation and degradation of Cyclins, as well as many other proteins, imposes order on the cell cycle and contributes to genome maintenance. The destruction of many cell cycle regulated proteins, including Cyclins A and B, is controlled by a large, multi-subunit E3 ubiquitin ligase termed the Anaphase Promoting Complex/Cyclosome (APC/C). APC/C activity is tightly regulated during the cell cycle. Its activation state increases dramatically in mid-mitosis and it remains active until the end of G1 phase. Following its mandatory inactivation at the G1/S boundary, APC/C activity remains low until the subsequent mitosis. Due to its role in guarding against the inappropriate or untimely accumulation of Cyclins, the APC/C is a core component of the cell cycle oscillator. In addition to the regulation of Cyclins, APC/C controls the degradation of many other substrates. Therefore, it is vital that the activity of APC/C itself be tightly guarded. The APC/C is most well studied for its role and regulation during mitosis. However, the APC/C also plays a similarly important and conserved role in the maintenance of G1 phase. Here we review the diverse mechanisms counteracting APC/C activity throughout the cell cycle and the importance of their coordinated actions on cell growth, proliferation, and disease.  相似文献   

11.
Cyclin B is the key regulatory protein controlling mitosis in all eukaryotes, where it binds cyclin-dependent kinase, cdk1, forming a complex which initiates the mitotic program through phosphorylation of select proteins. Cyclin B regulates the activation, subcellular localization, and substrate specificity of cdk1, and destruction of cyclin B is necessary for mitotic exit. Overexpression of human cyclin B1 has been found in numerous cancers and has been associated with tumor aggressiveness. Here we report the crystal structure of human cyclin B1 to 2.9 Å. Comparison of the structure with cyclin A and cyclin E reveals remarkably similar N-terminal cyclin box motifs but significant differences among the C-terminal cyclin box lobes. Divergence in sequence gives rise to unique interaction surfaces at the proposed cyclin B/ cdk1 interface as well as the ‘RxL’ motif substrate binding site on cyclin B. Examination of the structure provides insight into the molecular basis for differential affinities of protein based cyclin/cdk inhibitors such as p27, substrate recognition, and cdk interaction.  相似文献   

12.
13.
14.
We have computed the average structures for the ras-p21 protein and its strongly homologous inhibitor protein, rap-1A, bound to the ras-binding domain (RBD) of the raf protein, using molecular dynamics. Our purpose is to determine the differences in structure between these complexes that would result in no mitogenic activity of rap-1A-RBD but full activity of p21-RBD. We find that despite the similarities of the starting structures for both complexes, the average structures differ considerably, indicating that these two proteins do not interact in the same way with this vital target protein. p21 does not undergo major changes in conformation when bound to the RBD, while rap-1 A undergoes significant changes in structure on binding to the RBD, especially in the critical region around residue 61. The p21 and rap-1A make substantially different contacts with the RBD. For example, the loop region from residues 55–71 of rap-la makes extensive hydrogen-bond contacts with the RBD, while the same residues of p21 do not. Comparison of the structures of the RBD in both complexes reveals that it undergoes considerable changes in structure when its structure bound to p21 is compared with that bound to rap-1A. These changes in structure are due to displacements of regular structure (e.g., α-helices and β-sheets) rather than to changes in the specific conformations of the segments themselves. Three regions of the RBD have been found to differ significantly from one another in the two complexes: the binding interface between the two proteins at residues 60 and 70, the region around residues 105–106, and 118–120. These regions may constitute effector domains of the RBD whose conformations determine whether or not mitogenic signal transduction will occur.  相似文献   

15.
It has been suggested that binding of p27 and p21 kinase inhibitory proteins (KIPs) to cyclin-dependent kinases (cdks) render them inaccessible to cdk-activating kinase (CAK), presumably by steric hindrance by the C-terminal residues. However, this common mechanism of inhibition is inconsistent with the known structural divergence in the p27 and p21 C-terminal domains. Therefore, we studied the direct binding of N-terminal minimal domain of p27 (amino acids 28-81) to cdk2/cyclin E. An unlabeled p27 minimal domain, mutated in the N-terminal LFG motif, was unable to compete with a labeled minimal domain for binding to cdk2/cyclin E. The p27 and its minimal domain inhibited CAK-mediated phosphorylation of cdk2/cyclin E. This inhibitory effect was significantly diminished with p27 minimal domain mutated in the LFG motif. A synthetic peptide, ACRRLFGPVDSE, from the N-terminal residues 17-28 of p21, was also a potent inhibitor of CAK-mediated cdk2/cyclin E phosphorylation. Taken together, these results show that anchoring of p27 or p21 KIPs to cyclin E via the N-terminal LFG-containing motif can block CAK access to its cdk2/cyclin E substrate.  相似文献   

16.
The Borrelia burgdorferi genome encodes five orthologues of the substrate binding protein oligopeptide permease A (OppA). It was previously shown that these genes are under the control of separate promoters and are differentially expressed under various environmental conditions. We were interested in determining whether there are also differences in substrate specificities among the proteins. The substrate specificities of recombinant proteins were determined by screening for high-affinity peptides by use of a combinatorial phage display heptapeptide library. Different heptapeptides with high affinities for OppA-1, OppA-2, and OppA-3 were identified. No heptapeptide binding OppA-4 or OppA-5 could be identified. Competitive binding assays were performed under various conditions to determine the substrate preferences of the OppA proteins. OppA-1 retained maximal activity over a broad range of pHs (5.5 to 7.5), whereas OppA-2 and OppA-3 showed peak activities at pHs below 5.5. OppA-1 and OppA-2 showed preferences for tripeptides over dipeptides and longer-chain peptides. Although a wide variety of amino acyl side chains were tolerated by all three OppA proteins, OppA-1 showed the broadest substrate specificity and was able to accommodate peptides composed of bulky hydrophobic residues; OppA-2 and OppA-3 showed preferences for peptides composed of small nonpolar amino acids. All three OppA proteins showed preferences for peptides composed of L- rather than D-amino acids. OppA-3 showed the greatest tolerance for changes in stereochemistry. Substantial differences in the substrate specificities of the OppA proteins of B. burgdorferi suggest that they may have distinct functions in the organism.  相似文献   

17.
Alterations in cell cycle regulating proteins are a key characteristic in neoplastic proliferation of lymphoblast cells in patients with Acute Lymphoblastic Leukemia (ALL). The aim of our study was to investigate whether the routinely administered ALL chemotherapeutic agents would be able to bind and inhibit the key deregulated cell cycle proteins such as - Cyclins E1, D1, D3, A1 and Cyclin Dependent Kinases (CDK) 2 and 6. We used Schrödinger Glide docking protocol to dock the chemotherapeutic drugs such as Doxorubicin and Daunorubicin and others which are not very common including Clofarabine, Nelarabine and Flavopiridol, to the crystal structures of these proteins. We observed that the drugs were able to bind and interact with cyclins E1 and A1 and CDKs 2 and 6 while their docking to cyclins D1 and D3 were not successful. This binding proved favorable to interact with the G1/S cell cycle phase proteins that were examined in this study and may lead to the interruption of the growth of leukemic cells. Our observations therefore suggest that these drugs could be explored for use as inhibitors for these cell cycle proteins. Further, we have also highlighted residues which could be important in the designing of pharmacophores against these cell cycle proteins. This is the first report in understanding the mechanism of action of the drugs targeting these cell cycle proteins in leukemia through the visualization of drug-target binding and molecular docking using computational methods.  相似文献   

18.
N Dyson  P Guida  K Münger    E Harlow 《Journal of virology》1992,66(12):6893-6902
Studies of adenovirus E1A oncoprotein mutants suggest that the association of E1A with the retinoblastoma protein (pRB) is necessary for E1A-mediated transformation. Mutational analysis of E1A indicates that two regions of pRB are required for E1A to form stable complexes with the retinoblastoma protein. In addition to pRB binding, these regions are necessary for E1A association with several other cellular proteins, including p130, p107, cyclin A, and p33cdk2. Here we show that short synthetic peptides containing the pRB-binding sequences of E1A are sufficient for interaction with p107, cyclin A, and p130. The E7 protein of human papillomavirus type 16 contains an element that binds to pRB and appears to be functionally homologous to the E1A sequences. Peptides containing this region of the E7 protein were able to interact with p107, cyclin A, and p130 in addition to pRB. These findings suggest that the common mechanism of transformation used by these viral oncogenes involves their association with a set of polypeptides.  相似文献   

19.
We have computed the average structures for the ras-p21 protein and its strongly homologous inhibitor protein, rap-1A, bound to the ras-binding domain (RBD) of the raf protein, using molecular dynamics. Our purpose is to determine the differences in structure between these complexes that would result in no mitogenic activity of rap-1A-RBD but full activity of p21-RBD. We find that despite the similarities of the starting structures for both complexes, the average structures differ considerably, indicating that these two proteins do not interact in the same way with this vital target protein. p21 does not undergo major changes in conformation when bound to the RBD, while rap-1 A undergoes significant changes in structure on binding to the RBD, especially in the critical region around residue 61. The p21 and rap-1A make substantially different contacts with the RBD. For example, the loop region from residues 55–71 of rap-la makes extensive hydrogen-bond contacts with the RBD, while the same residues of p21 do not. Comparison of the structures of the RBD in both complexes reveals that it undergoes considerable changes in structure when its structure bound to p21 is compared with that bound to rap-1A. These changes in structure are due to displacements of regular structure (e.g., -helices and -sheets) rather than to changes in the specific conformations of the segments themselves. Three regions of the RBD have been found to differ significantly from one another in the two complexes: the binding interface between the two proteins at residues 60 and 70, the region around residues 105–106, and 118–120. These regions may constitute effector domains of the RBD whose conformations determine whether or not mitogenic signal transduction will occur.  相似文献   

20.
When mitosis is bypassed, as in some cancer cells or in natural endocycles, sister chromosomes remain paired and produce four-stranded diplochromosomes or polytene chromosomes. Cyclin/Cdk1 inactivation blocks entry into mitosis and can reset G2 cells to G1, allowing another round of replication. Reciprocally, persistent expression of Cyclin A/Cdk1 or Cyclin E/Cdk2 blocks Drosophila endocycles. Inactivation of Cyclin A/Cdk1 by mutation or overexpression of the Cyclin/Cdk1 inhibitor, Roughex (Rux), converts the 16(th) embryonic mitotic cycle to an endocycle; however, we show that Rux expression fails to convert earlier cell cycles unless Cyclin E is also downregulated. Following induction of a Rux transgene in Cyclin E mutant embryos during G2 of cell cycle 14 (G2(14)), Cyclins A, B, and B3 disappeared and cells reentered S phase. This rereplication produced diplochromosomes that segregated abnormally at a subsequent mitosis. Thus, like the yeast CKIs Rum1 and Sic1, Drosophila Rux can reset G2 cells to G1. The observed cyclin destruction suggests that cell cycle resetting by Rux was associated with activation of the anaphase-promoting complex (APC), while the presence of diplochromosomes implies that this activation of APC outside of mitosis was not sufficient to trigger sister disjunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号