首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could, thus, reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.  相似文献   

2.
An S  Song JJ 《Molecules and cells》2011,31(6):491-496
For eukaryotes, fine tuning of gene expression is necessary to coordinate complex genetic information. Recent studies have shown that noncoding RNAs (ncRNAs) play central roles in this process. For example, ncRNAs participate in multiple diverse functions such as mRNA degradation, epigenetic regulation and alternative splicing. The findings regarding this new player in gene regulation suggest that the mechanism of gene regulation is much more complicated and subtle than previously thought. In this review, new findings concerning the role of ncRNAs in gene regulation are discussed.  相似文献   

3.
4.
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

5.
《Epigenetics》2013,8(9):1261-1270
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

6.
Combinatorial modifications of the core histones have the potential to fine-tune the epigenetic regulation of chromatin states. The Aurora B kinase is responsible for generating the double histone H3 modification tri-methylated K9/phosphorylated S10 (H3K9me3/S10ph), which has been implicated in chromosome condensation during mitosis. In this study, we have identified a novel role for Aurora B in epigenetic marking of silent chromatin during cell differentiation. We find that phosphorylation of H3 S10 by Aurora B generates high levels of the double H3K9me3/S10ph modification in differentiated postmitotic cells and also results in delocalisation of HP1beta away from heterochromatin in terminally differentiated plasma cells. Microarray analysis of the H3K9me3/S10ph modification shows a striking increase in the modification across repressed genes during differentiation of mesenchymal stem cells. Our results provide evidence that the Aurora B kinase has a role in marking silent chromatin independently of the cell cycle and suggest that targeting of Aurora B-mediated phosphorylation of H3 S10 to repressed genes could be a mechanism for epigenetic silencing of gene expression.  相似文献   

7.
《Cell reports》2020,30(5):1319-1328.e6
  1. Download : Download high-res image (135KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.  相似文献   

10.
11.
真核细胞核中转录因子与染色质模板如何相互作用调节基因转录是基因表达调控研究的一个中心问题.近来的研究表明,参与基因转录的各种调节因子在核内形成多种复合物,如RNA聚合酶Ⅱ全酶、染色质重塑复合物、核小体以及增强小体等.这些复合物之间相互作用,调节染色质结构,在染色质模板上进一步组装成转录复合物,参与转录调节的各个环节,调节转录复合物活性.这些复合物的形成,整合了转录调节的各种信息,提高了转录调节效率,是真核基因有效、严格、有序表达的基础.另一方面,这些复合物的存在给基因表达调控的研究提出了新问题,发展新的研究思路和新的研究技术具有重要意义.  相似文献   

12.
13.
14.
Bromodomain结构域首先在果蝇蛋白质Brahma中发现,折叠模式独特且高度保守,是最早也是截至目前公认唯一可与乙酰化赖氨酸结合的结构域。BRD蛋白通过结合不同的蛋白质或者定位蛋白质到细胞核发挥精细调节作用。BRD蛋白复合物常特异性识别并结合到染色质组蛋白H3/H4特定的乙酰化赖氨酸残基,从而影响靶基因的转录翻译;该蛋白复合物功能异常通常与多种疾病的发生相关联,表明对转录翻译调节有重要意义。但迄今为止,BRD蛋白复合物修饰染色质机理不明,现有研究提示BRD蛋白复合物维持染色质乙酰化状态,也可以与染色质组蛋白其它位点结合,从整体水平增强组蛋白乙酰化精度和效率。  相似文献   

15.
16.
17.
染色质装配、修饰和重塑复合体,以及它们和核小体、染色质等一起形成的超大分子复合体的精细结构解析,对于在原子水平揭示表观遗传信息建立、维持和调控的分子机制至关重要.近年来,迅速发展的冷冻电镜三维重构技术对于解析这些多亚基、大分子质量、柔性超大分子复合体的结构带来了很好的机遇.本文综述了冷冻电镜三维重构技术在表观遗传学相关的结构研究领域中的一些应用和进展.  相似文献   

18.
Qi HY  Zhang ZJ  Li YJ  Fang XD 《遗传》2011,33(12):1291-1299
真核基因的表达受到各种顺式调控元件、反式作用因子、染色质DNA以及组蛋白表观遗传修饰等多因素、多层次的调控。染色质三维空间结构的变化在调控真核基因表达方面也发挥了至关重要的作用。染色质构象的变化一方面可以使增强子等调控元件与靶基因相互靠近,从而促进基因表达;同时也可能通过形成空间位阻结构阻碍调控元件作用于靶基因,抑制基因表达。虽然染色质结构变化调控真核基因表达的机制仍缺乏较为精确的分子模型,但在组蛋白修饰、核小体定位、染色体领域以及染色质间相互作用等表观遗传学研究中,已经发现有诸多证据支持染色质构象在真核基因表达调控中的重要地位。文章主要综述了染色质结构及其构象的变化等对真核基因表达调控的影响。  相似文献   

19.
Biochemical and cytogenetic experiments have led to the hypothesis that eukaryotic chromatin is organized into a series of distinct domains that are functionally independent. Two expectations of this hypothesis are: (i) adjacent genes are more frequently co-expressed than is expected by chance; and (ii) co-expressed neighbouring genes are often functionally related. Here we report that over 10% of Arabidopsis thaliana genes are within large, co-expressed chromosomal regions. Two per cent (497/22,520) of genes are highly co-expressed (r > 0.7), about five times the number expected by chance. These genes fall into 226 groups distributed across the genome, and each group typically contains two to three genes. Among the highly co-expressed groups, 40% (91/226) have genes with high amino acid sequence similarity. Nonetheless, duplicate genes alone do not explain the observed levels of co-expression. Co-expressed, non-homologous genes are transcribed in parallel, share functions, and lie close together more frequently than expected. Our results show that the A. thaliana genome contains domains of gene expression. Small domains have highly co-expressed genes that often share functional and sequence similarity and are probably co-regulated by nearby regulatory sequences. Genes within large, significantly correlated groups are typically co-regulated at a low level, suggesting the presence of large chromosomal domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号