首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process of regeneration is most readily studied in species of sponge, hydra, planarian and salamander (i.e., newt and axolotl). The closure of MRL mouse ear pinna through-and-through holes provides a mammalian model of unusual wound healing/regeneration in which a blastema-like structure closes the ear hole and cartilage and hair follicles are replaced. Recent studies, based on a broad level of DNA damage and a cell cycle pattern of G2/M “arrest,” showed that p21Cip1/Waf1 was missing from the MRL mouse ear and that a p21-null mouse could close its ear holes. Given the p53/p21 axis of control of DNA damage, cell cycle arrest, apoptosis and senescence, we tested the role of p53 in the ear hole regenerative response. Using backcross mice, we found that loss of p53 in MRL mice did not show reduced healing. Furthermore, cross sections of MRL. p53−/− mouse ears at 6 weeks post-injury showed an increased level of adipocytes and chondrocytes in the region of healing whereas MRL or p21−/− mice showed chondrogenesis alone in this same region, though at later time points. In addition, we also investigated other cell cyclerelated mutant mice to determine how p21 was being regulated. We demonstrate that p16 and Gadd45 null mice show little healing capacity. Interestingly, a partial healing phenotype in mice with a dual Tgfβ/Rag2 knockout mutation was seen. These data demonstrate an independence of p53 signaling for mouse appendage regeneration and suggest that the role of p21 in this process is possibly through the abrogation of the Tgfβ/Smad pathway.Key words: mouse, regeneration, p53, p21, MRL, ear-hole, Tgfβ  相似文献   

2.

Background

Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ) “super-healer” mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant.

Methodology

The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ “super-healer” mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints.

Principal Findings

Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair.

Conclusion and Significance

The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.  相似文献   

3.
MRL mice display unusual healing properties. When MRL ear pinnae are hole punched, the holes close completely without scarring, with regrowth of cartilage and reappearance of both hair follicles and sebaceous glands. Studies using (MRL/lpr × C57BL/6)F2 and backcross mice first showed that this phenomenon was genetically determined and that multiple loci contributed to this quantitative trait. The lpr mutation itself, however, was not one of them. In the present study we examined the genetic basis of healing in the Large (LG/J) mouse strain, a parent of the MRL mouse and a strain that shows the same healing phenotype. LG/J mice were crossed with Small (SM/J) mice and the F2 population was scored for healing and their genotypes determined at more than 200 polymorphic markers. As we previously observed for MRL and (MRL × B6)F2 mice, the wound-healing phenotype was sexually dimorphic, with female mice healing more quickly and more completely than male mice. We found quantitative trait loci (QTLs) on chromosomes (Chrs) 9, 10, 11, and 15. The heal QTLs on Chrs 11 and 15 were linked to differential healing primarily in male animals, whereas QTLs on Chrs 9 and 10 were not sexually dimorphic. A comparison of loci identified in previous crosses with those in the present report using LG/J × SM/J showed that loci on Chrs 9, 11, and 15 colocalized with those seen in previous MRL crosses, whereas the locus on Chr 10 was not seen before and is contributed by SM/J.  相似文献   

4.
Sexually dimorphic genes regulate healing and regeneration in MRL mice   总被引:3,自引:0,他引:3  
Abstract The MRL mouse has been shown to display unusual healing properties. In particular, when the ear pinna is hole punched, the hole that is made closes completely without scarring, with reformation of hair follicles and sebaceous glands, and regrowth of cartilage. Initial studies using (MRL/lpr × C57BL/6) F2 and backcross mice showed that this phenomenon is genetically determined and that multiple loci contribute to this quantitative trait. In the present study, with twice as many animals, we have confirmed many of the original heal loci and identified new ones. We have also found that this phenotype is sexually dimorphic in that female mice heal more quickly and more completely than male mice. To test the cause of this difference, we castrated both males and females. Castration of males led to better healing, although ovariectomy did not lead to worse healing in female mice. Finally, most heal loci were shown to be responsible for regulating healing primarily in male animals more than in females, or vice versa. Thus, sex plays a highly significant role in the closure of wounded tissue in this mammalian model of healing and regeneration.  相似文献   

5.
Tissue regeneration and scarless healing involves the complete replacement and functional restoration of damaged organs and tissues. In this study of the scarless healing MRL mouse model, we demonstrate that 2-mm diameter through-and-through holes made in the cartilaginous part of previously injured MRL mouse ears are closed more efficiently, and that the regenerative repair response is significantly accelerated compared with unprimed MRL and control nonhealer strains of mice. Accelerated healing was detected both locally and distally from the original site of injury indicating the involvement of systemic components such as circulating cell types or soluble factors. Histologically, we observed early differences during the wound repair process (before Day 4 post injury) with accelerated formation of blastema-like structures, epidermal downgrowths, and enhanced epithelium thickening in wound border zones in primed MRL mice versus unprimed MRL mice. Although the mechanism of tissue regeneration remains unclear, the results from this study justify the use of the MRL model for further experimentation directed toward the identification of proteins and cell types capable of stimulating scarless tissue regeneration.The views presented in this paper are those of the authors.  相似文献   

6.
Wound healing in mammals can take several weeks to months and the process is always accompanied by scar formation. Wound healing mechanisms that mimic regeneration are not found in most mature mammalian tissues. However, the MRL/MPJ (MRL) mouse has the unique capacity to regenerate ear hole wound completely in less than a month. To identify genes involved in wound healing without a scar, we chose to use restriction fragment differential display-PCR to isolate genes differentially expressed in the MRL (good healer) mouse and the C57BL/6 (poor healer) mouse at different stages of wound healing. We identified 36 genes that were differentially expressed in the regenerating tissue of good and poor healer strains of which several genes are also genetically linked to wound healing and thus are potential candidate genes for scarless wound healing.  相似文献   

7.
Most adult mammals heal without restorative replacement of lost tissue and instead form scar tissue at an injury site. One exception is the adult MRL/MpJ mouse that can regenerate ear and cardiac tissue after wounding with little evidence of scar tissue formation. Following production of a MRL mouse ear hole, 2 mm in diameter, a structure rapidly forms at the injury site that resembles the amphibian blastema at a limb amputation site during limb regeneration. We have isolated MRL blastemal cells (MRL-B) from this structure and adapted them to culture. We demonstrate by RT-PCR that even after continuous culturing of these cells they maintain expression of several progenitor cell markers, including DLK (Pref-1), and Msx-1. We have isolated the underlying extracellular matrix (ECM) produced by these MRL-B cells using a new non-proteolytic method and studied the biological activities of this cell-free ECM. Multiplex microELISA analysis of MRL-B cell-free ECM vs. cells revealed selective enrichment of growth factors such as bFGF, HGF and KGF in the matrix compartment. The cell-free ECM, degraded by mild enzyme treatment, was active in promoting migration and proliferation of progenitor cells in vitro and accelerating wound closure in a mouse full thickness cutaneous wound assay in vivo. In vivo, a single application of MRL-B cell matrix-derived products to full thickness cutaneous wounds in non-regenerative mice, B6, induced re-growth of pigmented hair, dermis and epidermis at the wound site whereas scar tissue replaced these tissues at wound sites in mice treated with vehicle alone. These studies suggest that matrix-derived products can stimulate regenerative healing and avert scar tissue formation in adult mammals.  相似文献   

8.
We previously demonstrated that after a severe cryoinjury to the right ventricle of the heart, adult MRL mice display structural and functional recovery with myocardial tissue replacement resembling that seen in amphibians. The control non-regenerating adult C57BL/6 (B6) mouse shows a predominant scar response. In the present study, radiation chimeras reconstituted with fetal liver cells from either healer MRL or nonhealer B6 mice were generated to test for a transfer of phenotype. Allogeneic MRL fetal liver cells were injected into x-irradiated (9 Gy) B6 mice and B6 fetal liver cells were injected into x-irradiated MRL mice. In these allogeneic chimeras, the healing response to cardiac cryoinjury was predominantly of the donor phenotype. Thus, MRL fetal liver cells transferred the healing phenotype to the B6 nonhealer with the appearance of Y-chromosome positive, donor-derived cardiomyocytes in the injury site and MRL-like healing with little scar. Similarly, B6 fetal liver cells transferred the nonhealing phenotype to the MRL with little cardiomyocyte growth and an acellular B6-like scar. These results are in contrast to the ear hole closure response which was of the recipient phenotype. We conclude that, in the case of the heart, fetal liver-derived stem cells regulate regenerative healing.  相似文献   

9.
Mammals rarely regenerate their lost or injured tissues into adulthood. MRL/MpJ mouse strain initially identified to heal full-thickness ear wounds now represents a classical example of mammalian wound regeneration since it can heal a spectrum of injuries such as skin and cardiac wounds, nerve injuries and knee articular cartilage lesions. In addition to MRL/MpJ, a few other mouse strains such as LG/J (a parent of MRL/MpJ) and LGXSM-6 (arising from an intercross between LG/J and SM/J mouse strains) have now been recognized to possess regenerative/healing abilities for articular cartilage and ear wound injuries that are similar, if not superior, to MRL/MpJ mice. While some mechanisms underlying regenerative potential have been begun to emerge, a complete set of biological processes and pathways still needs to be elucidated. Using a panel of healer and non-healer mouse strains, our recent work has provided some insights into the genes that could potentially be associated with healing potential. Future mechanistic studies can help seek the Holy Grail of regenerative medicine. This review highlights the regenerative capacity of selected mouse strains for articular cartilage, in particular, and lessons from other body tissues, in general.  相似文献   

10.
Transforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell‐matrix remodeling, epithelial‐mesenchymal transition, and wound healing in a highly context‐dependent and tissue‐specific manner. Tgfb2?/? mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2βgeo (knockout‐first lacZ‐tagged insertion) gene‐trap allele and Tgfb2flox conditional allele. Tgfb2βgeo/βgeo or Tgfb2βgeo/‐ mice died at perinatal stage from the same congenital heart defects as Tgfb2?/? mice. β‐galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2βgeo fetal tissue sections. Tgfb2flox mice were produced by crossing the Tgfb2+/βgeo mice with the FLPeR mice. Tgfb2flox/? mice were viable. Tgfb2 conditional knockout (Tgfb2cko/?) fetuses were generated by crossing of Tgfb2flox/? mice with Tgfb2+/?; EIIaCre mice. Systemic Tgfb2cko/? embryos developed cardiac defects which resembled the Tgfb2βgeo/βgeo, Tgfb2βgeo/?, and Tgfb2?/? fetuses. In conclusion, Tgfb2βgeo and Tgfb2flox mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesis 52:817–826, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Wound healing/regeneration mouse models are few, and studies performed have mainly utilized crosses between MRL/MPJ (a good healer) and SJL/J (a poor healer) or MRL/lpr (a good healer) and C57BL/6J (a poor healer). Wound healing is a complex trait with many genes involved in the expression of the phenotype. Based on data from previous studies that common and additional quantitative trait loci (QTL) were identified using different crosses of inbred strains of mice for various complex traits, we hypothesized that a new cross would identify common and additional QTL, unique modes of inheritance, and interacting loci, which are responsible for variation in susceptibility to fast wound healing. In this study, we crossed DBA/1J (DBA, a good healer) and 129/SvJ (129, a poor healer) and performed a genome-wide scan using 492 (DBA×129) F2 mice and 98 markers to identify QTL that regulate wound healing/regeneration. Four QTL on chromosomes 1, 4, 12, and 18 were identified which contributed toward wound healing in F2 mice and accounted for 17.1% of the phenotypic variation in ear punch healing. Surprisingly, locus interactions contributed to 55.7% of the phenotype variation in ear punch healing. In conclusion, we have identified novel QTL and shown that minor interacting loci contribute significantly to wound healing in DBA×129 mice cross. The authors Masinde, Li, and Nguyen contributed equally to this article.  相似文献   

12.
The ability to regenerate tissues and limbs in its most robust form is seen in many non-mammalian species. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivalling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. The adult MRL mouse regrows cartilage, skin, hair follicles and myocardium with near perfect fidelity and without scarring. This is seen in the ability to close through-and-through ear holes, which are generally used for lifelong identification of mice, and the anatomic and functional recovery of myocardium after a severe cryo-injury. We present histological, biochemical and genetic data indicating that the enhanced breakdown of scar-like tissue may be an underlying factor in the MRL regenerative response. Studies as to the source of the cells in the regenerating MRL tissue are discussed. Such studies appear to support multiple mechanisms for cell replacement.  相似文献   

13.
14.
Roper E  Weinberg W  Watt FM  Land H 《EMBO reports》2001,2(2):145-150
In tumorigenesis of the skin, activated Ras co-operates with mutations that inactivate the tumour suppressor p53, but the molecular basis for this co-operation remains unresolved. Here we show that activation of the Raf/MAP kinase pathway in primary mouse keratinocytes leads to a p53 and p21Cip1-dependent cycle arrest and to terminal differentiation. Raf activation in keratinocytes lacking p53 or p21Cip1 genes leads to expression of differentiation markers, but the cells do not cease to proliferate. Thus, loss of p53 or p21Cip1 function is necessary to disable growth-inhibitory Raf/MAP kinase signalling. Activation of oncogenes, including Ras, has been reported to stabilize and activate p53 via induction of the tumour suppressor p19ARF. However, the response to Raf in p19ARF–/– keratinocytes was indistinguishable from wild-type controls. Thus, p19ARF is not essential for Raf-induced p53 induction and cell cycle arrest in keratinocytes, indicating that oncogenes engage p53 activity via multiple mechanisms.  相似文献   

15.
Interferon regulatory factor 5 (IRF5) polymorphisms are strongly associated with an increased risk of developing the autoimmune disease systemic lupus erythematosus. In mouse lupus models, IRF5-deficiency was shown to reduce disease severity consistent with an important role for IRF5 in disease pathogenesis. However these mouse studies were confounded by the recent demonstration that the IRF5 knockout mouse line contained a loss-of-function mutation in the dedicator of cytokinesis 2 (DOCK2) gene. As DOCK2 regulates lymphocyte trafficking and Toll-like receptor signaling, this raised the possibility that some of the protective effects attributed to IRF5 deficiency in the mouse lupus models may instead have been due to DOCK2 deficiency. We have therefore here evaluated the effect of IRF5-deficiency in the MRL/lpr mouse lupus model in the absence of the DOCK2 mutation. We find that IRF5-deficient (IRF5−/−) MRL/lpr mice develop much less severe disease than their IRF5-sufficient (IRF5+/+) littermates. Despite markedly lower serum levels of anti-nuclear autoantibodies and reduced total splenocyte and CD4+ T cell numbers, IRF5−/− MRL/lpr mice have similar numbers of all splenic B cell subsets compared to IRF5+/+ MRL/lpr mice, suggesting that IRF5 is not involved in B cell development up to the mature B cell stage. However, IRF5−/− MRL/lpr mice have greatly reduced numbers of spleen plasmablasts and bone marrow plasma cells. Serum levels of B lymphocyte stimulator (BLyS) were markedly elevated in the MRL/lpr mice but no effect of IRF5 on serum BLyS levels was seen. Overall our data demonstrate that IRF5 contributes to disease pathogenesis in the MRL/lpr lupus model and that this is due, at least in part, to the role of IRF5 in plasma cell formation. Our data also suggest that combined therapy targeting both IRF5 and BLyS might be a particularly effective therapeutic approach in lupus.  相似文献   

16.
Disruption of the mouse Atm gene, whose human counterpart is consistently mutated in ataxia-telangiectasia (A-T) patients, creates an A-T mouse model exhibiting most of the A-T-related systematic and cellular defects. While ATM plays a major role in signaling the p53 response to DNA strand break damage, Atm−/− p53−/− mice develop lymphomas earlier than Atm−/− or p53−/− mice, indicating that mutations in these two genes lead to synergy in tumorigenesis. The cell cycle G1/S checkpoint is abolished in Atm−/− p53−/− mouse embryonic fibroblasts (MEFs) following γ-irradiation, suggesting that the partial G1 cell cycle arrest in Atm−/− cells following γ-irradiation is due to the residual p53 response in these cells. In addition, the Atm−/− p21−/− MEFs are more severely defective in their cell cycle G1 arrest following γ-irradiation than Atm−/− and p21−/− MEFs. The Atm−/− MEFs exhibit multiple cellular proliferative defects in culture, and an increased constitutive level of p21 in these cells might account for these cellular proliferation defects. Consistent with this notion, Atm−/− p21−/− MEFs proliferate similarly to wild-type MEFs and exhibit no premature senescence. These cellular proliferative defects are also rescued in Atm−/− p53−/− MEFs and little p21 can be detected in these cells, indicating that the abnormal p21 protein level in Atm−/− cells is also p53 dependent and leads to the cellular proliferative defects in these cells. However, the p21 mRNA level in Atm−/− MEFs is lower than that in Atm+/+ MEFs, suggesting that the higher level of constitutive p21 protein in Atm−/− MEFs is likely due to increased stability of the p21 protein.  相似文献   

17.
Wound repair/regeneration is a genetically controlled, complex process. In order to identify candidate genes regulating fast wound repair/regeneration in soft-tissue, the temporal protein profile of the soft-tissue healing process was analyzed in the ear-punched tissue of regeneration strain MRL/MpJ-Fas(lpr) (MRL) mice and non-regeneration strain C57BL/6J(B6) mice using surface-enhanced laser desorption and ionization (SELDI) ProteinChip technology. Five candidate proteins were identified in which responses of MRL to the ear punch were 2-4-fold different compared to that of B6. Their corresponding genes were predicted using an antigen-antibody assay validated mass-based approach. Most of the predicted genes are known to play a role or are likely to play a role in the wound repair/regeneration. Of the five candidate proteins, the amount of the 23560 Da protein in the ear-punched tissue was significantly correlated with the rate of ear healing in six representative strains of mice, making it a good candidate for fast wound repair/regeneration. We speculate that the increased concentration of the 23560 Da protein in the wound tissue could stimulate the expression of various growth-promoting proteins and consequently speed up the wound repair/regeneration processes. Here, we have shown that examination of protein expression profile using SELDI technology, coupled with database search, is an alternative approach to search for candidate genes for wound repair/regeneration. This novel approach can be implemented in a variety of biological applications.  相似文献   

18.
Oncogenic activation in primary murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the p53 tumor suppressor pathway. Conditional p53 activation efficiently induced a reversible cell cycle arrest but was unable to induce features of senescence. In contrast, coexpression of oncogenic ras with p53 produced an irreversible cell cycle arrest that displayed features of cellular senescence. Introduction of a conditional murine p53 allele (p53val135) into double p53/p21-null mouse embryonic fibroblasts showed that p21waf1 was not required for this effect, since p53-/-;p21-/- double-null cells undergo terminal growth arrest with features of senescence following coexpression of oncogenic Ras and p53. Our results indicate that oncogenic activation of the Ras pathway in murine fibroblasts converts p53 into a senescence inducer through a p21waf1-independent mechanism.  相似文献   

19.
Defining the roadblocks responsible for cell cycle arrest in adult cardiomyocytes lies at the core of developing cardiac regenerative therapies. p53 and Mdm2 are crucial mediators of cell cycle arrest in proliferative cell types, however, little is known about their function in regulating homeostasis and proliferation in terminally differentiated cell types, like cardiomyocytes. To explore this, we generated a cardiac-specific conditional deletion of p53 and Mdm2 (DKO) in adult mice. Herein we describe the development of a dilated cardiomyopathy, in the absence of cardiac hypertrophy. In addition, DKO hearts exhibited a significant increase in cardiomyocyte proliferation. Further evaluation showed that proliferation was mediated by a significant increase in Cdk2 and cyclin E with downregulation of p21Cip1 and p27Kip1. Comparison of miRNA expression profiles from DKO mouse hearts and controls revealed 11 miRNAs that were downregulated in the DKO hearts and enriched for mRNA targets involved in cell cycle regulation. Knockdown of these miRNAs in neonatal rat cardiomyocytes significantly increased cytokinesis with an upregulation in the expression of crucial cell cycle regulators. These results illustrate the importance of the cooperative activities of p53 and Mdm2 in a network of miRNAs that function to impose a barrier against aberrant cardiomyocyte cell cycle re-entry to maintain cardiac homeostasis.  相似文献   

20.
Genotoxic stress triggers the p53 tumor suppressor network to activate cellular responses that lead to cell cycle arrest, DNA repair, apoptosis or senescence. This network functions mainly through transactivation of different downstream targets, including cell cycle inhibitor p21, which is required for short-term cell cycle arrest or long-term cellular senescence, or proapoptotic genes such as p53 upregulated modulator of apoptosis (PUMA) and Noxa. However, the mechanism that switches from cell cycle arrest to apoptosis is still unknown. In this study, we found that mice harboring a hypomorphic mutant p53, R172P, a mutation that abrogates p53-mediated apoptosis while keeping cell cycle control mostly intact, are more susceptible to ultraviolet-B (UVB)-induced skin damage, inflammation, and immunosuppression than wild-type mice. p53R172P embryonic fibroblasts (MEFs) are hypersensitive to UVB and prematurely senesce after UVB exposure, in stark contrast to wild-type MEFs, which undergo apoptosis. However, these mutant cells are able to repair UV-induced DNA lesions, indicating that the UV hypersensitive phenotype results from the subsequent damage response. Mutant MEFs show an induction of p53 and p21 after UVR, while wild-type MEFs additionally induce PUMA and Noxa. Importantly, p53R172P MEFs failed to downregulate anti-apoptotic protein Bcl-2, which has been shown to play an important role in p53-dependent apoptosis. Taken together, these data demonstrate that in the absence of p53-mediated apoptosis, cells undergo cellular senescence to prevent genomic instability. Our results also indicate that p53-dependent apoptosis may play an active role in balancing cellular growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号