首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations.

As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be ?3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

3.
Bovine papillomavirus type 1 (BPV-1) requires viral proteins E1 and E2 for efficient DNA replication in host cells. E1 functions at the BPV origin as an ATP-dependent helicase during replication initiation. Previously, we used alanine mutagenesis to identify two hydrophilic regions of the E1 DNA binding domain (E1DBD), HR1 (E1(179-191)) and HR3 (E1(241-252)), which are critical for sequence-specific recognition of the papillomavirus origin. Based on sequence and structure, these regions are similar in spacing and location to DNA binding regions A and B2 of T antigen, the DNA replication initiator of simian virus 40 (SV40). HR1 and A are both part of extended loops which are supported by residues from the HR3 and B2 alpha-helices. Both elements contain basic residues which may contact DNA, although lack of cocrystal structures for both E1 and T antigen make this uncertain. To better understand how E1 interacts with origin DNA, we used random mutagenesis and a yeast one-hybrid screen to select mutations of the E1DBD which disrupt sequence-specific DNA interactions. From the screen we selected seven single point mutants and one double point mutant (F175S, N184Y/K288R, D185G, V193M, F237L, K241E, R243K, and V246D) for in vitro analysis. All mutants tested in electrophoretic mobility shift assays displayed reduced sequence-specific DNA binding compared to the wild-type E1DBD. Mutants D185G, F237L, and R243K were rescued in vitro for DNA binding by the replication enhancer protein E2. We also tested the eight mutations in full-length E1 for the ability to support DNA replication in Chinese hamster ovary cells. Only mutants D185G, F237L, and R243K supported significant DNA replication in vivo which highlights the importance of E1DBD-E2 interactions for papillomavirus DNA replication. Based on the specific point mutations examined, we also assigned putative roles to individual residues in DNA binding. Finally, we discuss sequence and spacing similarities between E1 HR1 and HR3 and short regions of two other DNA tumor virus origin-binding proteins, SV40 T antigen and Epstein-Barr virus nuclear antigen 1 (EBNA1). We propose that all three proteins use a similar DNA recognition mechanism consisting of a loop structure which makes base-specific contacts (HR1) and a helix which primarily contacts the DNA backbone (HR3).  相似文献   

4.
5.
To overexpress EBNA-1 in E.coli and generate the specific antibody,in this study,the antigenicity,epitope and hydrolysis of EBNA-1 were analyzed using the computer design software Biosun.Based on the prediction by computer analysis,the sequence encoding EBNA-1385-557 was amplified by PCR with the specific primers.The expression vector containing EBNA-1385-557 coding sequence was constructed.His-tagged EBNA-1385-557 was expressed in E.coli.The soluble recombinant protein was purified using Ni-NTA chromato...  相似文献   

6.
HapR has been given the status of a high cell density master regulatory protein in Vibrio cholerae. Though many facts are known regarding its structural and functional aspects, much still can be learnt from natural variants of the wild type protein. This work aims at investigating the nature of functional inertness of a HapR natural variant harboring a substitution of a conserved glutamate residue at position 117 which participates in forming a salt bridge by lysine (HapRV2G-E117K). Experimental evidence presented here reveals the inability of this variant to interact with various cognate promoters by in vitro gel shift assay. Furthermore, the elution profiles of HapRV2G-E117K protein along with the wild type functional HapRV2G in size-exclusion chromatography as well as circular dichroism spectra did not reflect any significant differences in its structure, thereby indicating the intactness of dimer in the variant protein. To gain further insight into the global shape of the proteins, small angle X-ray scattering analysis (SAXS) was performed. Intriguingly, increased radius of gyration of HapRV2G-E117K of 27.5 Å in comparison to the wild type protein from SAXS data analyses implied a significant alteration in the global shape of the dimeric HapRV2G-E117K protein. Structure reconstruction brought forth that the DNA binding domains were substantially “parted away” in this variant. Taken together, our data illustrates that substitution of the conserved glutamate residue by lysine in the dimerization domain induces separation of the two DNA binding domains from their native-like positioning without altering the dimeric status of HapR variant.  相似文献   

7.
The steroid hormone receptors regulate important physiological functions such as reproduction, metabolism, immunity, and electrolyte balance. Mutations within steroid receptors result in endocrine disorders and can often drive cancer formation and progression. Despite the conserved three-dimensional structure shared among members of the steroid receptor family and their overlapping DNA binding preference, activation of individual steroid receptors drive unique effects on gene expression. Here, we present the first structure of the human mineralocorticoid receptor DNA binding domain, in complex with a canonical DNA response element. The overall structure is similar to the glucocorticoid receptor DNA binding domain, but small changes in the mode of DNA binding and lever arm conformation may begin to explain the differential effects on gene regulation by the mineralocorticoid and glucocorticoid receptors. In addition, we explore the structural effects of mineralocorticoid receptor DNA binding domain mutations found in type I pseudohypoaldosteronism and multiple types of cancer.  相似文献   

8.
Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10–100 μm; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.  相似文献   

9.
The zinc-binding domain (ZBD) of prokaryotic DNA primases has been postulated to be crucial for recognition of specific sequences in the single-stranded DNA template. To determine the molecular basis for this role in recognition, we carried out homolog-scanning mutagenesis of the zinc-binding domain of DNA primase of bacteriophage T7 using a bacterial homolog from Geobacillus stearothermophilus. The ability of T7 DNA primase to catalyze template-directed oligoribonucleotide synthesis is eliminated by substitution of any five-amino acid residue-long segment within the ZBD. The most significant defect occurs upon substitution of a region (Pro-16 to Cys-20) spanning two cysteines that coordinate the zinc ion. The role of this region in primase function was further investigated by generating a protein library composed of multiple amino acid substitutions for Pro-16, Asp-18, and Asn-19 followed by genetic screening for functional proteins. Examination of proteins selected from the screening reveals no change in sequence-specific recognition. However, the more positively charged residues in the region facilitate DNA binding, leading to more efficient oligoribonucleotide synthesis on short templates. The results suggest that the zinc-binding mode alone is not responsible for sequence recognition, but rather its interaction with the RNA polymerase domain is critical for DNA binding and for sequence recognition. Consequently, any alteration in the ZBD that disturbs its conformation leads to loss of DNA-dependent oligoribonucleotide synthesis.  相似文献   

10.
11.
12.
13.
p53 can induce apoptosis through mitochondrial membrane permeabilization by interaction of its DNA binding region with the anti-apoptotic proteins BclxL and Bcl2. However, little is known about the action of p53 at the mitochondria in molecular detail. By using NMR spectroscopy and fluorescence polarization we characterized the binding of wild-type and mutant p53 DNA binding domains to BclxL and show that the wild-type p53 DNA binding domain leads to structural changes in the BH3 binding region of BclxL, whereas mutants fail to induce such effects due to reduced affinity. This was probed by induced chemical shift and residual dipolar coupling data. These data imply that p53 partly achieves its pro-apoptotic function at the mitochondria by facilitating interaction between BclxL and BH3-only proteins in an allosteric mode of action. Furthermore, we characterize for the first time the binding behavior of Pifithrin-μ, a specific small molecule inhibitor of the p53-BclxL interaction, and present a structural model of the protein-ligand complex. A rather unusual behavior is revealed whereby Pifithrin-μ binds to both sides of the protein-protein complex. These data should facilitate the rational design of more potent specific BclxL-p53 inhibitors.  相似文献   

14.
锌指蛋白是最大的蛋白家族,是识别核酸最常见的、最有效的结构元件。通过选择合适的表达载体及诱导表达条件,实现了小鼠转录因子Zif268的锌指DNA结合区在大肠杆菌中的部分可溶性表达。凝胶迁移率移动试验证实纯化的可溶部分锌指DNA结合区可以特异性识别、结合其天然靶序列,提示锌指DNA结合区在大肠杆菌中得到了功能性表达。锌指DNA结合区在大肠杆菌中的功能性表达成功为锌指蛋白DNA相互作用的胞内遗传筛选模型的建立奠定了基础。  相似文献   

15.
Stabilization of the p53 tumor suppressor is a critical event in the response to various forms of cellular stress. Two distinct signaling pathways are thought to lead to this stabilization, depending on the type of cellular stress encountered. Genotoxic stress, such as chromosomal breaks or lesions induced by chemotherapeutic agents, result in the activation of the well-characterized DNA damage response pathway. Conversely, cellular stress that results from the aberrant activation of oncogenes triggers p53 stabilization via the induction of the p19ARF pathway. While activation of the DNA damage pathway ultimately causes a complex array of post-translational modifications on p53, activation few if any modifications have been demonstrated to occur following activation of the p19ARF pathway. We and others have recently identified a novel modification on p53, acetylation of lysine 120 within the DNA binding domain. This acetylation event is eliminated by tumor-derived mutations in p53 and its presence is required for the tumor suppressor apoptotic function of p53. We demonstrate here that both the DNA damage response pathway and the p19ARF/oncogene stress pathway induce the acetylation of p53 at lysine 120.  相似文献   

16.
17.
Fragments of intercellular adhesion molecule 1 (ICAM-1) containing only the two most N terminal of its five immunoglobulin SF domains bind to rhinovirus 3 with the same affinity and kinetics as a fragment with the entire extracellular domain. The fully active two-domain fragments contain 5 or 14 more residues than a previously described fragment that is only partially active. Comparison of X-ray crystal structures show differences at the bottom of domain 2. Four different glycoforms of ICAM-1 bind with identical kinetics.  相似文献   

18.
19.
The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号