首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In migrating cells, with especial prominence in lamellipodial protrusions at the cell front, highly dynamic connections are formed between the actin cytoskeleton and the extracellular matrix through linkages of integrin adhesion receptors to actin filaments via complexes of cytosolic “connector” proteins. Myosin-mediated contractile forces strongly influence the dynamic behavior of these adhesion complexes, apparently in two counter-acting ways: negatively as the cell-generated forces enhance complex dissociation, and at the same time positively as force-induced signaling can lead to strengthening of the linkage complexes. The net balance arising from this dynamic interplay is challenging to ascertain a priori, rendering experimental studies difficult to interpret and molecular manipulations of cell and/or environment difficult to predict. We have constructed a kinetics-based model governing the dynamic behavior of this system. We obtained ranges of parameter value sets yielding behavior consistent with that observed experimentally for 3T3 cells and for CHO cells, respectively. Model simulations are able to produce results for the effects of paxillin mutations on the turnover rate of actin/integrin linkages in CHO cells, which are consistent with recent literature reports. Overall, although this current model is quite simple it provides a useful foundation for more detailed models extending upon it.Key words: cell migration, cytoskeleton, contractile force, paxillin  相似文献   

2.
3.
4.
Development is punctuated by morphogenetic rearrangements of epithelial tissues, including detachment of motile cells during epithelial–mesenchymal transition (EMT). Dramatic actin rearrangements occur as cell–cell junctions are dismantled and cells become independently motile during EMT. Characterizing dynamic actin rearrangements and identifying actin machinery driving these rearrangements is essential for understanding basic mechanisms of cell–cell junction remodeling. Using immunofluorescence and live cell imaging of scattering MDCK cells we examine dynamic actin rearrangement events during EMT and demonstrate that zyxin–VASP complexes mediate linkage of dynamic medial actin networks to adherens junction (AJ) membranes. A functional analysis of zyxin in EMT reveals its role in regulating disruption of actin membrane linkages at cell–cell junctions, altering cells' ability to fully detach and migrate independently during EMT. Expression of a constitutively active zyxin mutant results in persistent actin‐membrane linkages and cell migration without loss of cell–cell adhesion. We propose zyxin functions in morphogenetic rearrangements, maintaining collective migration by transducing individual cells' movements through AJs, thus preventing the dissociation of individual migratory cells. J. Cell. Physiol. 222: 612–624, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Adhesive and migratory behavior can be cell type, integrin, and substrate dependent. We have compared integrin and substrate differences using three integrin receptors: α5β1, α6β1, and αLβ2 expressed in a common cell type, CHO.B2 cells, which lack integrin α subunits, as well as in different cell types that express one or more of these integrins. We find that CHO.B2 cells expressing either α6β1 or αLβ2 integrins migrate and protrude faster and are more directionally persistent on laminin or ICAM-1, respectively, than CHO.B2 cells expressing α5β1 on fibronectin. Despite rapid adhesion maturation and the presence of large adhesions in both the α6β1- and αLβ2-expressing cells, they display robust tyrosine phosphorylation. In addition, whereas myosin II regulates adhesion maturation and turnover, protrusion rates, and polarity in cells migrating on fibronectin, surprisingly, it does not have comparable effects in cells expressing α6β1 or αLβ2. This apparent difference in the integration of myosin II activity, adhesion, and migration arises from alterations in the ligand-integrin-actin linkage (molecular clutch). The elongated adhesions in the protrusions of the α6β1-expressing cells on laminin or the αLβ2-expressing cells on ICAM-1 display a novel, rapid retrograde flux of integrin; this was largely absent in the large adhesions in protrusions of α5β1-expressing cells on fibronectin. Furthermore, the force these adhesions exert on the substrate in protrusive regions is reduced compared to similar regions in α5-expressing cells, and the adhesion strength is reduced. This suggests that intracellular forces are not efficiently transferred from actomyosin to the substratum due to altered adhesion strength, that is, avidity, affinity, or the ligand-integrin-actin interaction. Finally, we show that the migration of fast migrating leukocytes on fibronectin or ICAM-1 is also largely independent of myosin II; however, their adhesions are small and do not show retrograde fluxing suggesting other intrinsic factors determine their migration differences.  相似文献   

6.
Focal adhesion regulation of cell behavior   总被引:23,自引:0,他引:23  
Focal adhesions lie at the convergence of integrin adhesion, signaling and the actin cytoskeleton. Cells modify focal adhesions in response to changes in the molecular composition, two-dimensional (2D) vs. three-dimensional (3D) structure, and physical forces present in their extracellular matrix environment. We consider here how cells use focal adhesions to regulate signaling complexes and integrin function. Furthermore, we examine how this regulation controls complex cellular behaviors in response to matrices of diverse physical and biochemical properties. One event regulated by the physical structure of the ECM is phosphorylation of focal adhesion kinase (FAK) at Y397, which couples FAK to several signaling pathways that regulate cell proliferation, survival, migration, and invasion.  相似文献   

7.
BACKGROUND: Cell adhesion and motility are accomplished through a functional linkage of the extracellular matrix with the actin cytoskeleton via adhesion complexes composed of integrin receptors and associated proteins. To determine whether this linkage is attained actively or passively, we isolated integrin complexes from nonadherent hematopoietic cells and determined their influence on the polymerization of actin. RESULTS: We observed that alpha(V)beta3 complexes are capable of dramatically accelerating the rate of actin assembly, resulting in actin fibers tethered at their growing ends by clustered integrins. The ability to enhance actin polymerization was dependent upon Arg-Gly-Asp-ligand-induced beta3 tyrosine phosphorylation, agonist-induced cellular activation, sequestration of Diaphanous formins, and clustering of the receptor. CONCLUSIONS: These results suggest that adhesion complexes actively promote actin assembly from their cytosolic face in order to establish a mechanical linkage with the extracellular matrix.  相似文献   

8.
Cell motion is driven by interplay between the actin cytoskeleton and the cell adhesions in the front part of the cell. The actin network segregates into lamellipodium and lamellum, whereas the adhesion complexes are characteristically distributed underneath the actin system. Here, we suggest a computational model for this characteristic organization of the actin-adhesion system. The model is based on the ability of the adhesion complexes to sense mechanical forces, the stick-slip character of the interaction between the adhesions and the moving actin network, and a hypothetical propensity of the actin network to disintegrate upon sufficiently strong stretching stresses. We identify numerically three possible types of system organization, all observed in living cells: two states in which the actin network exhibits segregation into lamellipodium and lamellum, whereas the cell edge either remains stationary or moves, and a state where the actin network does not undergo segregation. The model recovers the asynchronous fluctuations and outward bulging of the cell edge, and the dependence of the edge protrusion velocity on the rate of the nascent adhesion generation, the membrane tension, and the substrate rigidity.  相似文献   

9.
Adhesion to tumor target cells is essential for initiation and execution of cellular cytotoxicity. In this study, we use single cell force spectroscopy to determine the exact biophysical values of the interaction forces between NK cells and tumor cells. We show that engagement of the activating NK cell receptor 2B4 can rapidly mediate an increase in the force necessary to separate NK cells from tumor cells, starting from 1 nN and increasing to 3 nN after only 120 s tumor cell contact. This early adhesion was mediated by the integrin LFA-1 and dependent on the actin cytoskeleton. The ability of NK cells to rapidly adhere to tumor target cells is consistent with their function in innate immune responses. Our data further suggest that a killing decision is already made within 120- 300 s of tumor cell contact, supporting the essential function of cell adhesion during the early phase of cellular cytotoxicity.  相似文献   

10.
The ability of adhesion receptors to transmit biochemical signals and mechanical force across cell membranes depends on interactions with the actin cytoskeleton. Human filamins are large actin cross-linking proteins that connect integrins to the cytoskeleton. Filamin binding to the cytoplasmic tail of β integrins has been shown to prevent integrin activation in cells, which is important for controlling cell adhesion and migration. The molecular-level mechanism for filamin binding to integrin has been unclear, however, as it was recently demonstrated that filamin undergoes intramolecular auto-inhibition of integrin binding. In this study, using steered molecular dynamics simulations, we found that mechanical force applied to filamin can expose cryptic integrin binding sites. The forces required for this are considerably lower than those for filamin immunoglobulin domain unfolding. The mechanical-force-induced unfolding of filamin and exposure of integrin binding sites occur through stable intermediates where integrin binding is possible. Accordingly, our results support filamin's role as a mechanotransducer, since force-induced conformational changes allow binding of integrin and other transmembrane and intracellular proteins. This observed force-induced conformational change can also be one of possible mechanisms involved in the regulation of integrin activation.  相似文献   

11.
Integrin structure   总被引:17,自引:0,他引:17  
The integrins are a family of alpha,beta heterodimeric receptors that mediate dynamic linkages between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are expressed by all multicellular animals, but their diversity varies widely among species; for example, in mammals, 19 alpha and 8 beta subunit genes encode polypeptides that combine to form 25 different receptors, whereas the Drosophila and Caenorhabditis genomes encode only five and two integrin alpha subunits respectively. Thousands of studies over the last two decades have investigated the molecular, cellular and organismal basis of integrin function. Gene deletion has demonstrated essential roles for almost all integrins, with the defects suggesting widespread contributions to both the maintenance of tissue integrity and the promotion of cellular migration. Integrin-ligand interactions are now considered to provide physical support for cells in order to maintain cohesion, to permit the generation of traction forces to enable movement, and to organize signalling complexes to modulate differentiation and cell fate. Animal-model studies have also shown that integrins contribute to the progression of many common diseases, and have implicated them as potential therapeutic targets. The use of anti-integrin monoclonal antibodies and ligand-mimetic peptides has validated this suggestion for inflammatory, neoplastic, traumatic and infectious conditions. Thus, to understand more about the mechanisms underlying tissue organization and cellular trafficking, and to identify approaches for regulating these processes in disease, there is intense interest in determining the molecular basis of integrin function. It is important to state at the outset that the tertiary structure of the integrin dimer is unknown. Our current understanding of the molecular basis of integrin function is therefore compiled from the results of a large number of studies that have employed a wide range of complementary technologies.  相似文献   

12.
Both epidermal growth factor (EGF) and the extracellular matrix components have been implicated in the pathobiology of adenocarcinomas by somewhat poorly understood mechanisms. We have addressed this problem using an in vitro model comprising the colon adenocarcinoma cell line HT29-D4, wherein the role of EGF and type IV collagen on cell adhesion was examined. We demonstrated that the effect of EGF on HT29-D4 cell adhesion was regulated by type IV collagen in a time- and dose-dependent manner. The incorporation of a panel of monoclonal antibodies to integrins alpha1beta1, alpha2beta1 and alpha3beta1 in adhesion medium revealed that EGF-mediated increase in the cell adhesion was mediated essentially by alpha2beta1, and the use of flow cytometry led us to conclude that this EGF effect was mediated by an increase in alpha2beta1 activation and not by an increase in cell surface expression of integrin. An indirect immunofluorescence technique was employed to demonstrate that focal adhesion kinase (FAK) and alpha2beta1 integrin were present in focal complexes in large EGF-induced lamellipodia whereas actin cytoskeleton was organised in small tips that colocalised with FAK. This pattern was observed at early time points (15 min) with a strong FAK tyrosine phosphorylation and with an increase in mitogen-activated protein kinase activity (5-15 min) as measured by immunoprecipitation and immunoblotting. We conclude that at early time points of cell adhesion and spreading, EGF exerted an inside-out regulation of alpha2beta1 integrin in HT29-D4 cells. This regulation seemed to be mediated by EGF-dependent FAK phosphorylation entailing an increase in integrin activation and their recruitment in numerous focal complexes. Furthermore after activation, FAK induced aggregation of actin-associated proteins (paxillin, vinculin and other tyrosine phosphorylated proteins) in focal complexes, leading to organisation of actin cytoskeleton that is involved in lamellipodia formation. Finally, activated alpha2beta1 integrins intervened in all these processes clustered in small focal complexes but not in focal adhesions.  相似文献   

13.
《The Journal of cell biology》1996,134(6):1551-1562
Integrin cell surface adhesion receptors play a central role in mediating cell migration. We have developed a model system consisting of CHO cells ectopically expressing the alpha IIb beta 3 integrin to study integrin affinity and cytoskeletal interactions during cell migration. The alpha IIb beta 3 integrins are suited for study of integrin receptors during cell migration because they are well characterized with respect to ligand binding, cytoskeletal interactions, and signal transduction, and mutants with altered receptor function are available. The alpha IIb beta 3 receptor specifically mediates migration of alpha IIb beta 3-transfected CHO cells. The migration of transfected CHO cells was studied on a fibrinogen substrate both by time lapse videomicroscopy and by random and haptotactic transwell assays. Haptotactic and random transwell assays measured distinct aspects of migration, with the random transwell assay correlating most closely with time lapse videomicroscopy. Mutations in the cytoplasmic domains that increase ligand affinity or activation of the alpha IIb beta 3 receptor into a high affinity state by the LIBS6 antibody decreased the migration rate. Likewise, mutations that increase cytoskeletal organization without affecting affinity also decreased the migration rate. In contrast, truncation of the beta chain, which alters cytoskeletal associations as assayed by absence of focal adhesions, decreased haptotactic migration while increasing random migration. These effects on the migration rate were partially compensated for by altering substrate concentration, demonstrating optimum substrate concentrations that supported maximal migration. For example, cells expressing integrins locked in the high affinity state showed maximal migration at lower substrate concentrations than cells expressing low affinity receptor. Together, these results implicate the strength of adhesion between cell and substrate, as modulated by receptor affinity, organization of adhesive complexes, and substrate concentration, as important regulators of cell migration rate. Further, we demonstrate a dominant effect of high affinity integrin in inhibiting migration regardless of the organization of adhesive complexes. These observations have potential implications for tumor metastasis and its therapy.  相似文献   

14.
Integrins are heterodimeric transmembrane proteins that mediate substrate adhesion and migration but also the bidirectional transfer of information across the plasma membrane via their cytoplasmic domains. We addressed the question of whether the very short cytoplasmic tail of the alpha1 integrin subunit of alpha1beta1 integrin is required for alpha1beta1-specific adhesion, spreading, and migration. For this purpose we transfected the alpha1 integrin subunit and two cytoplasmically truncated alpha1 subunits into Chinese hamster ovary (CHO) cells. Elimination of the entire cytoplasmic domain of the alpha1 subunit does not affect adhesion but leads to inhibition of spreading and stress fiber formation. The defect in spreading could not be rescued by lysophosphatidic acid, which has been reported to stimulate actin stress fiber formation via Rho. Additionally, deletion of the entire cytoplasmic domain of the alpha1 subunit abolishes migration toward alpha1beta1-specific substrates. Migration and stress fiber formation are similar in CHO-alpha1 cells and CHO cells carrying an alpha1 subunit still containing the conserved GFFKR motif. So, the GFFKR motif of the alpha1 subunit is essential and sufficient for these processes.  相似文献   

15.
Cell shape and adhesion of cultured mammalian cells change dramatically during mitosis, however, how cell cycle-dependent alterations in cell adhesion are regulated remain to be elucidated. We show here that normal human mammary epithelial (HME) cells which became less adhesive and adopted the rounded morphology during the G(2)/M phase of the cell cycle significantly reduced their dependence on beta1 integrin-mediated adhesion to laminin, by using function blocking antibody to beta1 integrin. In G(2)/M cells, both total and cell surface expressions of beta1 integrin were comparable with those in G(1) cells but it was phosphorylated at threonines 788-789 within its cytoplasmic domain and coimmunoprecipitated Ca(2+)/calmodulin-dependent protein kinase (CaMK) II. The threonine phosphorylated beta1 integrin significantly reduced its intracellular linkage with actin, with no significant reduction in the actin expression. In contrast, beta1 integrin in G(1) cells was not threonine phosphorylated but formed a link with actin and coimmunoprecipitated the core enzyme of the serine/threonine protein phosphatase (PP) 2A. The results suggest that reduced beta1 integrin-mediated cell adhesion of HME cells to the substratum during mitosis may be induced by beta1 integrin phosphorylation at threonines 788-789 and its reduced ability to link with the actin cytoskeleton.  相似文献   

16.
Focal contacts and hemidesmosomes are cell-matrix adhesion structures of cultured epithelial cells. While focal contacts link the extracellular matrix to microfilaments, hemidesmosomes make connections with intermediate filaments. We have analyzed hemidesmosome assembly in 804G carcinoma cells. Our data show that hemidesmosomes are organized around a core of actin filaments that appears early during cell adhesion. These actin structures look similar to podosomes described in cells of mesenchymal origin. These podosome-like structures are distinct from focal contacts and specifically contain Arp3 (Arp2/3 complex), cortactin, dynamin, gelsolin, N-WASP, VASP, Grb2 and src-like kinase(s). The integrin alpha3beta1 is localized circularly around F-actin cores and co-distributes with paxillin, vinculin, and zyxin. We also show that the maintenance of the actin core and hemidesmosomes is dependent on actin polymerization, src-family kinases, and Grb2, but not on microtubules. Video microscopy analysis reveals that assembly of hemidesmosomes is preceded by recruitment of beta4 integrin subunit to the actin core before its positioning at hemidesmosomes. When 804G cells are induced to migrate, actin cores as well as hemidesmosomes disappear and beta4 integrin subunit becomes co-localized with dynamic actin at leading edges. We show that podosome-like structures are not unique to cells of mesenchymal origin, but also appear in epithelial cells, where they seem to be related to basement membrane adhesion.  相似文献   

17.
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton. In the context of stable adhesion, cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis. Here actin polymerization has been proposed to drive cell surfaces together, although F-actin reorganization also occurs as cell contacts mature. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.  相似文献   

18.
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.  相似文献   

19.
Integrating an integrin: a direct route to actin   总被引:3,自引:0,他引:3  
Integrins were so named for their ability to link the extracellular and intracellular skeletons. Now almost 20 years into integrin research, numerous questions remain as to how this interaction is accomplished and how it is modified to achieve a desired phenotype. As the cell adhesion and actin assembly fields are merging in combined approaches, novel actin assembly mechanisms are being uncovered. Some of the earliest identified cytoplasmic linker molecules, believed to mediate integrin-actin binding, are once again the subject of scrutiny as potential dynamic mediators of cell anchorage. It seems plausible that each unique cellular morphology occurs as the result of activation of distinct actin assembly systems that are either stabilized by unique bundling and linker proteins or modified for progression to a new phenotype. While this research initiative is likely to continue rapidly in a forward fashion, it remains to be clarified how integrins assemble the most stable and basic cytoskeletal phenotype, the adherent cell with prominent stress fibers. Recent investigations point towards a shift in the current model of anchoring at the cell periphery by providing both mechanisms and evidence for de novo actin assembly orchestrated by the adhesion site. Lacking a complete pathway from integrin ligation to an integrated extracellular-intracellular skeleton in any single system, this review proposes a simple model of integrin-mediated stress fiber integration by drawing from work in multiple systems.  相似文献   

20.
Collective cell movements are integral to biological processes such as embryonic development and wound healing and also have a prominent role in some metastatic cancers. In migrating Xenopus mesendoderm, traction forces are generated by cells through integrin-based adhesions and tension transmitted across cadherin adhesions. This is accompanied by assembly of a mechanoresponsive cadherin adhesion complex containing keratin intermediate filaments and the catenin-family member plakoglobin. We demonstrate that focal adhesion kinase (FAK), a major component of integrin adhesion complexes, is required for normal morphogenesis at gastrulation, closure of the anterior neural tube, axial elongation and somitogenesis. Depletion of zygotically expressed FAK results in disruption of mesendoderm tissue polarity similar to that observed when expression of keratin or plakoglobin is inhibited. Both individual and collective migrations of mesendoderm cells from FAK depleted embryos are slowed, cell protrusions are disordered, and cell spreading and traction forces are decreased. Additionally, keratin filaments fail to organize at the rear of cells in the tissue and association of plakoglobin with cadherin is diminished. These findings suggest that FAK is required for the tension-dependent assembly of the cadherin adhesion complex that guides collective mesendoderm migration, perhaps by modulating the dynamic balance of substrate traction forces and cell cohesion needed to establish cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号