首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The effects of DNA methylation on gene expression and chromatin structure suggest the existence of a mechanism in the nucleus capable of distinguishing methylated and non-methylated sequences. We report the finding of a nuclear protein in several vertebrate tissues and cell lines that binds preferentially to methylated DNA in vitro. Its lack of sequence-specific requirements makes it potentially capable of binding to any methylated sequence in mammalian nuclei. An in vivo counterpart of these results is that methylated CpGs are inaccessible to nucleases within nuclei. In contrast, non-methylated CpG sites, located mainly at CpG islands, and restriction sites not containing this dinucleotide, are relatively accessible. The possibility that DNA methylation acts through binding to specific proteins that could alter chromatin structure is discussed.  相似文献   

4.
5.
6.
7.
Unmethylated CpG islands associated with genes in higher plant DNA   总被引:16,自引:0,他引:16       下载免费PDF全文
The genomes of many higher plant species are the most highly methylated among eukaryotes. We report here that in spite of their heavy methylation, genomic DNAs from four plant species contain a fraction that is very rich in non-methylated sites. The fraction was characterized in maize where it represents about 2.5% of the total nuclear genome. In order to establish the genomic origin of the fraction, three maize genes containing clustered CpG were tested for methylation and were found to be non-methylated in the CpG-rich regions. By contrast, tested CpGs were methylated in a gene whose sequence showed no clustering of CpG. These observations suggest that the CpG-rich fraction of plants is at least partially derived from non-methylated regions that are associated with genes. A similar phenomenon has been described in vertebrate genomes. We discuss the evolution of CpG islands in both groups of organisms, and their possible uses in mapping and gene isolation in plants.  相似文献   

8.
Non-methylated islands in fish genomes are GC-poor.   总被引:7,自引:1,他引:6       下载免费PDF全文
In the vertebrate genomes studied to date the 5' end of many genes are associated with distinctive sequences known as CpG islands. CpG islands have three properties: they are non-methylated; the dinucleotide CpG occurs at the frequency predicted by base composition; and they are GC-rich. Unexpectedly we have found that CpG islands in certain fish only have the first two properties; that is, their GC-content is not elevated compared to bulk genomic DNA. Based on this finding, we speculate that the GC-richness of CpG islands in vertebrates other than fish is a passive consequence of a higher mutation rate in regions of open chromatin under conditions where the nucleotide precursor pools are biased.  相似文献   

9.

Background

The studies on CpG islands (CGI) and Alu elements functions, evolution, and distribution in the genome started since the discovery in nineteen eighties (1981, 1986, correspondingly). Their highly skewed genome wide distribution implies the non-random retrotransposition pattern. Besides CGIs in gene promoters, CGIs clusters were observed in the homeobox gene regions and in the macrosatellites, but the whole picture of their distribution specifics was not grasped. Attempts to identify any causative features upon their (genome wide) distribution, such as the DNA context mediated preferred insertion sites of Alu repeats, have been made to ascribe their clusters location.

Methods

Recent emergence of high resolution 3D map of human genome allowed segregating the genome into the large scale chromatin domains of naturally observable nuclear subcompartments, or Topologically Associated Domains (TADs), designated by spatial chromatin distribution. We utilized the chromatin map to elucidate relations between large scale chromatin state and CpG rich elements landscape.In the course of analysis it was confirmed that genes, Alu and CGI clusters maintain obvious, albeit different in strength, preference for open chromatin. For the first time it was clearly shown that the clusters density of the Alu and CGIs monotonically depend on the chromatin accessibility rate. In particular, the highest density of these elements is found in A1 euchromatin regions characterized by a high density of small length genes replicating in the early S-phase. It implies that these elements mediate (CGIs) or are a side element (Alus) of chromatin accessibility.

Results

We elucidated that both methylated and non-methylated CGIs display the affinity to chromatin accessibility. As a part of comparative genomics section, we elucidated that the dog’s genome non-canonical structure, outstanding in mammals for its high CGIs abundance compared to gene number, is explained by the presence of dense tandem CGI extended hotspots (500 kb on average) in subtelomeric and pericentromeric regions with highly skewed CG content, and not by CGIs global distribution pattern shift.

Conclusions

The study underlines the close association of CG-rich elements distribution with the newly introduced large scale chromatin state map, proposing a refined standpoint on interrelation of aforementioned genome elements and the chromatin state. To our expertise, the TAD-associated partition model employed in the study is likely the most substantial one regarding CpG rich clusters distribution among the whole genome chromatin/isochores maps available.
  相似文献   

10.
Xu K  Doak TG  Lipps HJ  Wang J  Swart EC  Chang WJ 《Gene》2012,498(1):75-80
Genome-wide methylation studies frequently lack adequate controls to estimate proportions of background reads in the resulting datasets. To generate appropriate control pools, we developed technique termed nMETR (non-methylated tag recovery) based on digestion of genomic DNA with methylation-sensitive restriction enzyme, ligation of adapter oligonucleotide and PCR amplification of non-methylated sites associated with genomic repetitive elements. The protocol takes only two working days to generate amplicons for deep sequencing. We applied nMETR for human DNA using BspFNI enzyme and retrotransposon Alu-specific primers. 454-sequencing enabled identification of 1113 nMETR tag sites, of them ~65% were parts of CpG islands. Representation of reads inversely correlated with methylation levels, thus confirming nMETR fidelity. We created software that eliminates background reads and enables to map and annotate individual tags on human genome. nMETR tags may serve as the controls for large-scale epigenetic studies and for identifying unmethylated transposable elements located close to genomic CpG islands.  相似文献   

11.
The methylation status of CpG islands is highly correlated with gene expression. Current methods for computational prediction of DNA methylation only utilize DNA sequence features. In this study, besides 35 DNA sequence features, we added four histone methylation marks to predict the methylation status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict the methylation pattern of all the CpG islands in the human genome, and the results are consistent with the previous reports. Our results imply the important roles of histone methylation marks in affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA sequences accessible. And the established open environment may be a prerequisite for or a consequence of the function implementation of zinc finger proteins that could protect CpG islands from DNA methylation.  相似文献   

12.
13.
14.
15.
Mobile genetic elements are responsible for half of the human genome, creating the host genomic instability or variability through several mechanisms. Two types of abnormal DNA methylation in the genome, hypomethylation and hypermethylation, are associated with cancer progression. Genomic hypermethylation has been most often observed on the CpG islands around gene promoter regions in cancer cells. In contrast, hypomethylation has been observed on mobile genetic elements in the cancer cells. It is recently considered that the hypomethylation of mobile genetic elements may play a biological role in cancer cells along with the DNA hypermethylation on CpG islands. Growing evidence has indicated that mobile genetic elements could be associated with the cancer initiation and progression through the hypomethylation. Here we review the recent progress on the relationship between DNA methylation and mobile genetic elements, focusing on the hypomethylation of LINE-1 and HERV elements in various human cancers and suggest that DNA hypomethylation of mobile genetic elements could have potential to be a new cancer therapy target in the future.  相似文献   

16.
17.
Mapping DNase-I hypersensitive sites on human isochores   总被引:3,自引:0,他引:3  
Di Filippo M  Bernardi G 《Gene》2008,419(1-2):62-65
Mapping DNase-I hypersensitive sites (HS) was used in the past to identify regulatory elements of specific genes. More recently, thousands of HS were identified in the human genome by using high-throughput methods. These approaches showed a general enrichment of HS near or within known genes, within CpG islands, within human-mouse conserved regions and in GC-rich regions of the genome. Here we show that HS: (i) are characterized by a much higher GC level (approximately 56%) than the average GC level of the human genome (approximately 41%); (ii) are overwhelmingly located in the GC-richest compartment of the genome, which is predominantly associated with an open chromatin structure; (iii) and are slightly more and slightly less frequent than genes, respectively, in the gene-rich and in the gene-poor isochore families.  相似文献   

18.
Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.  相似文献   

19.
20.
Human polymorphisms originate as mutations, and the influence of context on mutagenesis should be reflected in the distribution of sequences surrounding single nucleotide polymorphisms (SNPs). We have performed a computational survey of nearly two million human SNPs to determine if sequence-dependent hotspots for polymorphism exist in the human genome. Here we show that sequences containing CpG dinucleotides, which occur at low frequencies in the human genome, are 6.7-fold more abundant at polymorphic sites than expected. In contrast, polymorphisms in CpG sequences located within CpG islands, important regulatory regions that modulate gene expression, are 6.8-fold less prevalent than expected. The distribution of polymorphic alleles at CpGs in CpG islands is also significantly different from that in non-island regions. These data strongly support a role for 5-methylcytosine deamination in the generation of human variation, and suggest that variation at CpGs in islands is suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号