首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor gene RASSF1A is frequently hypermethylated in various tumors. However, how RASSF1A functions in tumor suppression was unknown. Our study shows that RASSF1A regulates the stability of mitotic cyclins and the timing of mitotic progression by inhibiting APC-Cdc20. RASSF1A appears to work in early pro-metaphase, after Emi1 destruction and before activation of the Mad2-dependent spindle checkpoint. Loss of RASSF1A expression induces premature APC activation, thereby resulting in acceleration of mitotic cyclin degradation and mitotic progression as well as induction of mitotic abnormalities. Thus, RASSF1A plays a critical role in mitotic progression and tumor suppression by controlling APC-Cdc20 activity.  相似文献   

2.
The tumour suppressor gene RASSF1A is frequently silenced in lung cancer and other sporadic tumours as a result of hypermethylation of a CpG island in its promoter. However, the precise mechanism by which RASSF1A functions in cell cycle regulation and tumour suppression has remained unknown. Here we show that RASSF1A regulates the stability of mitotic cyclins and the timing of mitotic progression. RASSF1A localizes to microtubules during interphase and to centrosomes and the spindle during mitosis. The overexpression of RASSF1A induced stabilization of mitotic cyclins and mitotic arrest at prometaphase. RASSF1A interacts with Cdc20, an activator of the anaphase-promoting complex (APC), resulting in the inhibition of APC activity. Although RASSF1A does not contribute to either the Mad2-dependent spindle assembly checkpoint or the function of Emi1 (ref. 1), depletion of RASSF1A by RNA interference accelerated the mitotic cyclin degradation and mitotic progression as a result of premature APC activation. It also caused a cell division defect characterized by centrosome abnormalities and multipolar spindles. These findings implicate RASSF1A in the regulation of both APC-Cdc20 activity and mitotic progression.  相似文献   

3.
The protein RAS association domain family protein 1A (RASSF1A), which is encoded by a gene that is frequently silenced in many types of sporadic tumor, functions in mitosis as a regulator of the anaphase-promoting complex (APC). With the use of a yeast two-hybrid screen, we identified a human protein, previously designated C19ORF5, that interacts with RASSF1A. This protein, here redesignated RASSF1A-binding protein 1 (RABP1), contains two microtubule-associated protein domains, and its association with RASSF1A was confirmed in mammalian cells by immunoprecipitation and immunofluorescence analyses. RABP1 was found to be localized to the centrosome throughout the cell cycle in a manner dependent on its microtubule-associated protein domains. Ectopic expression of RABP1 induced both stabilization of mitotic cyclins and mitotic arrest at prometaphase in a RASSF1A-dependent manner. It also increased the extent of association between RASSF1A and Cdc20. Conversely depletion of RABP1 by RNA interference prevented both the localization of RASSF1A to the spindle poles as well as its binding to Cdc20, resulting in premature destruction of mitotic cyclins and acceleration of mitotic progression. These findings indicate that RABP1 is required for the recruitment of RASSF1A to the spindle poles and for its inhibition of APC-Cdc20 activity during mitosis.  相似文献   

4.
A recent study shows that the RASSF1A tumor suppressor functions as a regulator of the ordered proteolytic steps that organize mitosis. By controlling the stability of microtubules and the activity of the anaphase-promoting complex (APC), RASSF1A might provide a crucial link between mechanisms of tumor suppression and mitotic cell division. Furthermore, another recent study shows that protein kinase A, which is a key growth regulator, inhibits the APC during mitosis in yeast.  相似文献   

5.
The tumor suppressor RASSF1A in human carcinogenesis: an update   总被引:14,自引:0,他引:14  
Loss of heterozygosity of the small arm of chromosome 3 is one of the most common alterations in human cancer. Most notably, a segment in 3p21.3 is frequently lost in lung cancer and several other carcinomas. We and others have identified a novel Ras effector at this segment, which was termed Ras Association Domain family 1 (RASSF1A) gene. RASSF1 consists of two main variants (RASSF1A and RASSF1C), which are transcribed from distinct CpG island promoters. Aberrant methylation of the RASSF1A promoter region is one of the most frequent epigenetic inactivation events detected in human cancer and leads to silencing of RASSF1A. Hypermethylation of RASSF1A was commonly observed in primary tumors including lung, breast, pancreas, kidney, liver, cervix, nasopharyngeal, prostate, thyroid and other cancers. Moreover, RASSF1A methylation was frequently detected in body fluids including blood, urine, nipple aspirates, sputum and bronchial alveolar lavages. Inactivation of RASSF1A was associated with an advanced tumor stage (e.g. bladder, brain, prostate, gastric tumors) and poor prognosis (e.g. lung, sarcoma and breast cancer). Detection of aberrant RASSF1A methylation may serve as a diagnostic and prognostic marker. The functional analyses of RASSF1A reveal an involvement in apoptotic signaling, microtubule stabilization and mitotic progression. The tumor suppressor RASSF1A may act as a negative Ras effector inhibiting cell growth and inducing cell death. Thus, RASSF1A may represent an epigenetically inactivated bona fide tumor suppressor in human carcinogenesis.  相似文献   

6.
The RASSF1A tumor suppressor protein interacts with the pro-apoptotic mammalian STE20-like kinases MST1 and MST2 and induces their autophosphorylation and activation, but the mechanism of how RASSF1A activates MST1/2 is unclear. Okadaic acid treatment and PP2A knockdown promoted MST1/2 phosphorylation. Data from dephosphorylation assays and reduced activation of MST1/2 seen after RASSF1A depletion suggest that dephosphorylation of MST1/2 on Thr-183 and Thr-180 by PP2A is prevented by RASSF1A, shifting the balance of MST1/2 to the activated autophosphorylated form. In addition to preventing dephosphorylation, RASSF1A also stabilized the MST2 protein. Through binding to MST1/2, RASSF1A supports maintenance of MST1/2 phosphorylation, promoting an active state of the MST kinases and favoring induction of apoptosis. This is one of the first examples of a tumor suppressor acting as an inhibitor of a specific dephosphorylation pathway.  相似文献   

7.
8.
9.
The RASSF1A isoform of RASSF1 is frequently inactivated by epigenetic alterations in human cancers, but it remains unclear if and how it acts as a tumor suppressor. RASSF1A overexpression reduces in vitro colony formation and the tumorigenicity of cancer cell lines in vivo. Conversely, RASSF1A knockdown causes multiple mitotic defects that may promote genomic instability. Here, we have used a genetic approach to address the function of RASSF1A as a tumor suppressor in vivo by targeted deletion of Rassf1A in the mouse. Rassf1A null mice were viable and fertile and displayed no pathological abnormalities. Rassf1A null embryonic fibroblasts displayed an increased sensitivity to microtubule depolymerizing agents. No overtly altered cell cycle parameters or aberrations in centrosome number were detected in Rassf1A null fibroblasts. Rassf1A null fibroblasts did not show increased sensitivity to microtubule poisons or DNA-damaging agents and showed no evidence of gross genomic instability, suggesting that cellular responses to genotoxins were unaffected. Rassf1A null mice showed an increased incidence of spontaneous tumorigenesis and decreased survival rate compared with wild-type mice. Irradiated Rassf1A null mice also showed increased tumor susceptibility, particularly to tumors associated with the gastrointestinal tract, compared with wild-type mice. Thus, our results demonstrate that Rassf1A acts as a tumor suppressor gene.  相似文献   

10.
Malignant melanoma represents one of the most aggressive malignancies but outcome is highly variable with early tumor lesions having an excellent prognosis following resection. We review here the data on identification of genes involved in the progression of melanoma as a result of expression array studies, genomic profiling, and genetic models. We focus on the role of tumor suppressors involved in cell cycle function, DNA repair, and genome maintenance. Highlighted are the roles of loss of p16 in promoting neoplasia in cooperation with deregulated MAPK signaling, and the role of loss of the RASSF1A protein in promoting chromosomal instability. The interactions between point mutation in growth signaling molecules and epigenetic changes in genes involved in DNA repair and cell division are discussed.Key Words: Melanoma, genetic progression, tumor suppressors, cell cycle, alkylating agents, mitotic spindle, mitotic spindle poisons.  相似文献   

11.
Tumor cells typically resist programmed cell death (apoptosis) induced by death receptors. Activated death receptors evoke Bax conformational change, cytochrome c release, and cell death. We report that the tumor suppressor gene RASSF1A is required for death receptor-induced Bax conformational change and apoptosis. TNFalpha or TRAIL stimulation induced recruitment of RASSF1A and MAP-1 to receptor complexes and promoted complex formation between RASSF1A and the BH3-like protein MAP-1. Normally, MAP-1 is inhibited by an intramolecular interaction. RASSF1A/MAP-1 binding relieved this inhibitory interaction, resulting in MAP-1 association with Bax. Deletion of the RASSF1A gene or short hairpin silencing of either RASSF1A or MAP-1 expression blocked MAP-1/Bax interaction, Bax conformational change and mitochondrial membrane insertion, cytochrome c release, and apoptosis in response to death receptors. Our findings identify RASSF1A and MAP-1 as important components between death receptors and the apoptotic machinery and reveal a potential link between tumor suppression and death receptor signaling.  相似文献   

12.
13.
Ras-association domain family (RASSF) proteins are encoded by numerous tumor suppressor genes that frequently become silenced in human cancers. RASSF10 is downregulated by promoter hypermethylation in cancers and has been shown to inhibit cell proliferation; however, the molecular mechanism(s) remains poorly understood. Here, we demonstrate for the first time that RASSF10 inhibits Cdk1/cyclin-B kinase complex formation to maintain stable levels of cyclin-B for inducing mitotic arrest during cell cycle. Using LC-MS/MS, live cell imaging, and biochemical approaches, we identify Nucleophosmin (NPM) as a novel functional target of RASSF10 and revealed that RASSF10 expression promoted the nuclear accumulation of GADD45a and knockdown of either NPM or GADD45a, resulting in impairment of RASSF10-mediated G2/M phase arrest. Furthermore, we demonstrate that RASSF10 is a substrate for the E3 ligase ring finger protein 2 (RNF2) and show that an NPM-dependent downregulation of RNF2 expression is critical to maintain stable RASSF10 levels in cells for efficient mitotic arrest. Interestingly, the Kaplan–Meier plot analysis shows a positive correlation of RASSF10 and NPM expression with greater gastric cancer patient survival and the reverse with expression of RNF2, suggesting that they may have a role in cancer progression. Finally, our findings provide insights into the mode of action of the RASSF10/NPM/RNF2 signaling cascade on controlling cell proliferation and may represent a novel therapeutic avenue for the prevention of gastric cancer metastasis.  相似文献   

14.
Tumor suppressor RASSF1A (RAS association domain family 1, isoform A) is known to play an important role in regulation of mitosis; however, little is known about how RASSF1A is regulated during the mitotic phase of the cell cycle. In the present study, we have identified Cullin-4A (CUL4A) as a novel E3 ligase for RASSF1A. Our results demonstrate that DNA damage-binding protein 1 (DDB1) functions as a substrate adaptor that directly interacts with RASSF1A and bridges RASSF1A to the CUL4A E3 ligase complex. Depletion of DDB1 also diminishes intracellular interactions between RASSF1A and CUL4A. Our results also show that RASSF1A interacts with DDB1 via a region containing amino acids 165-200, and deletion of this region abolishes RASSF1A and DDB1 interactions. We have found that CUL4A depletion results in increased levels of RASSF1A protein due to increased half-life; whereas overexpression of CUL4A and DDB1 markedly enhances RASSF1A protein ubiquitination resulting in reduced RASSF1A levels. We further show that CUL4A-mediated RASSF1A degradation occurs during mitosis, and depletion of CUL4A markedly reverses mitotic-phase-stimulated RASSF1A degradation. We also note that overexpression of CUL4A antagonizes the ability of RASSF1A to induce M-phase cell cycle arrest. Thus, our present study demonstrates that the CUL4A·DDB1 E3 complex is important for regulation of RASSF1A during mitosis, and it may contribute to inactivation of RASSF1A and promoting cell cycle progression.  相似文献   

15.
Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking. Here we have employed loss-of-function analysis in human epithelial cells for a detailed investigation of the contribution of RASSF1 to cell cycle progression. We found that RASSF1A has dual opposing regulatory connections to G(1)/S phase cell cycle transit. RASSF1A associates with the Ewing sarcoma breakpoint protein, EWS, to limit accumulation of cyclin D1 and restrict exit from G(1). Surprisingly, we found that RASSF1A is also required to restrict SCF(betaTrCP) activity to allow G/S phase transition. This restriction is required for accumulation of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 and the concomitant block of APC/C-dependent cyclin A turnover. The consequence of this relationship is inhibition of cell cycle progression in normal epithelial cells upon RASSF1A depletion despite elevated cyclin D1 concentrations. Progression to tumorigenicity upon RASSF1A gene inactivation should therefore require collaborating genetic aberrations that bypass the consequences of impaired APC/C regulation at the G(1)/S phase cell cycle transition.  相似文献   

16.
RASSF1A gene, found at the 3p21.3 locus, is a tumor suppressor gene frequently hypermethylated in human cancers. In this study, we report that compared with melanocytes in normal choroid, RASSF1A is downregulated in uveal melanoma samples and in uveal melanoma cell lines. LOH at 3p21.3 was detected in 50% of uveal melanoma. Moreover, methylation of the RASSF1A promoter was detected in 35 of 42 tumors (83%) and RASSF1A was also weakly expressed at the mRNA level. These data indicate that LOH at the RASSF1A locus or RASSF1A promoter methylation may partly account for the suppression of RASSF1A expression observed in uveal melanoma. Furthermore, following ectopic expression in three RASSF1A-deficient melanoma cell lines (OCM-1, Mel270, and 92.1), RASSF1A weakly reduces cell proliferation and anchorage-independent growth of uveal melanoma cells without effect on ERK1/2 activation, cyclin D1 and p27(Kip1) expression. This study explored biological functions and underlying mechanisms of RASSF1A in the ERK1/2 pathway in normal uveal melanocytes. We showed that siRNA-mediated depletion of RASSF1A increased ERK1/2 activation, cyclin D1 expression, and also decreased p27(Kip1) expression in normal uveal melanocytes. Moreover, that the depletion of RASSF1A induced senescence-associated β-galactosidase activity and increased p21(Cip1) expression suggests that RASSF1A plays a role in the escape of cellular senescence in normal uveal melanocytes. Interestingly, we found that RASSF1A was epigenetically inactivated in long-term culture of uveal melanocytes. Taken together, these data show that depletion of RASSF1A could be an early event observed during senescence of normal uveal melanocytes and that additional alterations are acquired during malignant transformation to uveal melanoma.  相似文献   

17.
The tumor suppressor candidate gene Ras association domain family 1, isoform A (RASSF1A) encodes a microtubule-associated protein that is implicated in the regulation of cell proliferation, migration, and apoptosis. Several studies indicate that down-regulation of RASSF1A resulting from promoter hypermethylation is a frequent epigenetic abnormality in malignant melanoma. In this study, we report that compared with melanocytes in normal skins or benign skin lesions, RASSF1A is down-regulated in melanoma tissues as well as cell lines, and its expression negatively correlates with lymph node metastasis. Following ectopic expression in RASSF1A-deficient melanoma A375 cell line, RASSF1A reduces cell viability, suppresses cell-cycle progression but enhances apoptotic cell death. In vivo, RASSF1A expression inhibits the tumorigenic potential of A375 cells in nude mice, which also correlates with decreased cell proliferation and increased apoptosis. On the molecular level, ectopic RASSF1A expression leads to differential expression of 209 genes, including 26 down-regulated and 183 up-regulated ones. Among different signaling pathways, activation of the apoptosis signal-regulating kinase 1 (ASK1)/p38 MAP kinase signaling is essential for RASSF1A-induced mitochondrial apoptosis, and the inhibition of the Akt/p70S6 kinase/eIF4E signaling is also important for RASSF1A-mediated apoptosis and cell-cycle arrest. This is the first study exploring the biological functions and the underlying mechanisms of RASSF1A during melanoma development. It also identifies potential targets for further diagnosis and clinical therapy.  相似文献   

18.
The RASSF1A tumor suppressor activates Bax via MOAP-1   总被引:3,自引:0,他引:3  
The novel tumor suppressor RASSF1A is frequently inactivated during human tumorigenesis by promoter methylation. RASSF1A may serve as a node in the integration of signaling pathways controlling a range of critical cellular functions including cell cycle, genomic instability, and apoptosis. The mechanism of action of RASSF1A remains under investigation. We now identify a novel pathway connecting RASSF1A to Bax via the Bax binding protein MOAP-1. RASSF1A and MOAP-1 interact directly, and this interaction is enhanced by the presence of activated K-Ras. RASSF1A can activate Bax via MOAP-1. Moreover, activated K-Ras, RASSF1A, and MOAP-1 synergize to induce Bax activation and cell death. Analysis of a tumor-derived point mutant of RASSF1A showed that the mutant was defective for the MOAP-1 interaction and for Bax activation. Moreover, inhibition of RASSF1A by shRNA impaired the ability of K-Ras to activate Bax. Thus, we identify a novel pro-apoptotic pathway linking K-Ras, RASSF1A and Bax that is specifically impaired in some human tumors.  相似文献   

19.
ABSTRACT: BACKGROUND: RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1) gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer. In this article, we report on the identification of novel RASSF1C target genes in non small cell lung cancer (NSCLC). METHODS: Over-expression and siRNA techniques were used to alter RASSF1C expression in human lung cancer cells, and Affymetrix-microarray study was conducted using NCI-H1299 cells over-expressing RASSF1C to identify RASSF1C target genes. RESULTS: The microarray study intriguingly shows that RASSF1C modulates the expression of a number of genes that are involved in cancer development, cell growth and proliferation, cell death, and cell cycle. We have validated the expression of some target genes using qRT-PCR. We demonstrate that RASSF1C over-expression increases, and silencing of RASSF1C decreases, the expression of PIWIL1 gene in NSCLC cells using qRT-PCR, immunostaining, and Western blot analysis. We also show that RASSF1C over-expression induces phosphorylation of ERK1/2 in lung cancer cells, and inhibition of the MEK-ERK1/2 pathway suppresses the expression of PIWIL1 gene expression, suggesting that RASSF1C may exert its activities on some target genes such as PIWIL1 through the activation of the MEK-ERK1/2 pathway. Also, PIWIL1 expression is elevated in lung cancer cell lines compared to normal lung epithelial cells. CONCLUSIONS: Taken together, our findings provide significant data to propose a model for investigating the role of RASSF1C/PIWIL1 proteins in initiation and progression of lung cancer.  相似文献   

20.
The tumor suppressor and microtubule-associated protein Ras association domain family 1A (RASSF1A) has a major effect on many cellular processes, such as cell cycle progression and apoptosis. RASSF1A expression is frequently silenced in cancer and is associated with increased metastasis. Therefore we tested the hypothesis that RASSF1A regulates microtubule organization and dynamics in interphase cells, as well as its effect on Golgi integrity and cell polarity. Our results show that RASSF1A uses a unique microtubule-binding pattern to promote site-specific microtubule rescues, and loss of RASSF1A leads to decreased microtubule stability. Furthermore, RASSF1A-associated stable microtubule segments are necessary to prevent Golgi fragmentation and dispersal in cancer cells and maintain a polarized cell front. These results indicate that RASSF1A is a key regulator in the fine tuning of microtubule dynamics in interphase cells and proper Golgi organization and cell polarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号