首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Omote H  Miyaji T  Juge N  Moriyama Y 《Biochemistry》2011,50(25):5558-5565
Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.  相似文献   

2.
Bone-resorbing osteoclasts are highly dependent on vesicular trafficking pathways that are regulated by Rab GTPases. In particular, polarised transport of acidic vesicles of the endocytic/lysosomal pathway is required for formation of the ruffled border, the resorptive organelle of the osteoclast. The breakdown products of resorption are then transported through the osteoclast by transcytosis, enabling their excretion. In this review, we summarise these trafficking routes, highlight the emerging evidence that the bone disease osteopetrosis results from defects in vesicular trafficking in osteoclasts, and outline the similarities between the endocytic/lysosomal compartment in osteoclasts and secretory lysosomes in other cell types.  相似文献   

3.
Constitutive oligomer formation appears to be the rule for the neurotransmitter:sodium symporter (NSS) family of proteins. The propensity to form oligomers is a prerequisite for NSS proteins to pass the rigid mechanisms of quality control in the endoplasmic reticulum. Moreover, recent findings suggest that correct trafficking to the plasma membrane appears to rely on the interaction of NSS homo-oligomers with components of the COPII-vesicle machinery. The transporters present at the plasma membrane are most likely organized in a tetrameric arrangement, as a dimer of dimers. In this review, we will address ongoing efforts to unravel the underlying mechanisms of oligomer formation at the molecular and cellular levels, and we will discuss oligomerization in terms of transporter function.  相似文献   

4.
The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found that neurons lacking the BEACH (beige-Chediak/Higashi) domain protein Neurobeachin (Nbea) had strongly reduced synaptic responses caused by a reduction in surface levels of glutamate and GABAA receptors. In the absence of Nbea, immature AMPA receptors accumulated early in the biosynthetic pathway, and mature N-methyl-d-aspartate, kainate, and GABAA receptors did not reach the synapse, whereas maturation and surface expression of other membrane proteins, synapse formation, and presynaptic function were unaffected. These data show that Nbea regulates synaptic transmission under basal conditions by targeting neurotransmitter receptors to synapses.  相似文献   

5.
6.
Emerging data are sheding light on the critical task for synapses to locally control the production of neurotransmitter receptors ultimately leading to receptor accumulation and modulation at postsynaptic sites. By analogy with the epithelial-cell paradigm, the postsynaptic compartment may be regarded as a polarized domain favoring the selective recruitment and retention of newly delivered receptors at synaptic sites. Targeted delivery of receptors to synaptic sites is facilitated by a local organization of the exocytic pathway, likely resulting from spatial cues triggered by the nerve. This review focuses on the various mechanisms responsible for regulation of receptor assembly and trafficking. A particular emphasis is given to the role of synaptic anchoring and scaffolding proteins in the sorting and routing of their receptor companion along the exocytic pathway. Other cellular components such as lipidic microdomains, the docking and fusion machinery, and the cytoskeleton also contribute to the dynamics of receptor trafficking at the synapse.  相似文献   

7.
8.
In isolated rat adipose cells, physiologically relevant insulin target cells, glucose transporter 4 (GLUT4) subcellular trafficking can be assessed by transfection of exofacially HA-tagged GLUT4. To simultaneously visualize the transfected GLUT4, we fused GFP with HA-GLUT4. With the resulting chimeras, GFP-HA-GLUT4 and HA-GLUT4-GFP, we were able to visualize for the first time the cell-surface localization, total expression, and intracellular distribution of GLUT4 in a single cell. Confocal microscopy reveals that the intracellular proportions of both GFP-HA-GLUT4 and HA-GLUT4-GFP are properly targeted to the insulin-responsive aminopeptidase-positive vesicles. Dynamic studies demonstrate close similarities in the trafficking kinetics between the two constructs and with native GLUT4. However, while the basal subcellular distribution of HA-GLUT4-GFP and the response to insulin are indistinguishable from those of HA-GLUT4 and endogenous GLUT4, most of the GFP-HA-GLUT4 is targeted to the plasma membrane with little further insulin response. Thus, HA-GLUT4-GFP will be useful to study GLUT4 trafficking in vivo while GFP on the N-terminus interferes with intracellular retention.  相似文献   

9.
The present experiments investigated the trafficking of the vesicular acetylcholine transporter (VAChT) tagged with the enhanced green fluorescent protein (EGFP) in living cholinergic cells (SN56). The EGFP-VAChT chimera was located in endosomal-like compartments in the soma of SN56 cells, and it was also targeted to varicosities of neurites. In contrast, EGFP alone in cells was soluble in the cytoplasm. The C-terminal cytoplasmic tail of VAChT has been implicated in targeting of VAChT to synaptic vesicles; thus, we have examined the role of the C-terminal region in the trafficking to varicosities. A C-terminal fragment tagged with EGFP appeared to be selectively accumulated in varicosities when expressed in SN56 cells. Interestingly, the protein was not freely soluble in the cytosol, and it presented a punctate pattern of expression. However, EGFP-C terminus did not present this peculiar pattern of expression in a nonneuronal cell line (HEK 293). Moreover, the C-terminal region of VAChT did not seem to be essential for VAChT trafficking, as a construct that lacks the C-terminal tail was, similar to EGFP-VAChT, partially targeted to endocytic organelles in the soma and sorted to varicosities. These experiments visualize VAChT for the first time in living cells and suggest that there might be multiple signals that participate in trafficking of VAChT to sites of synaptic vesicle accumulation.  相似文献   

10.
As is known, regulated exocytosis of synaptic vesicles constitutes a primary means of communication between neurons, and it is subjected to substantial alterations in a number of brain pathologies. Recent investigations showed that vesicular transport events in neuroendocrine cells and presynaptic terminals are realized by a family of specialized membrane proteins of the vesicle (v-SNAREs) and another family located in the target cytoplasmic membrane (t-SNAREs). A variety of such proteins has already been described in different preparations; however, their precise localization and role in vesicular trafficking during functional changes in the cells remain ambiguous. In addition, new synaptic proteins appear to be involved in the vesicular cycle; the functions of these proteins remain unclear. The role of synaptic proteins in the course of cell excitation, in particular functions of core SNARE synaptic proteins (vesicular synaptobrevin/VAMPs and plasma membrane syntaxins/SNAP-25), as well as those of novel presynaptic proteins (Munc-13, Munc-18, CAPS proteins, and others), are discussed in this review. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 155–159, March–April, 2008.  相似文献   

11.

Background

Plant phloem consists of an interdependent cell pair, the sieve element / companion cell complex. Sucrose transporters are localized to enucleate sieve elements (SE), despite being transcribed in companion cells (CC). Due to the high turnover of SUT1, sucrose transporter mRNA or protein must traffic from CC to SE via the plasmodesmata. Localization of SUT mRNA at plasmodesmatal orifices connecting CC and SE suggests RNA transport, potentially mediated by RNA binding proteins. In many organisms, polar RNA transport is mediated through RNA binding proteins interacting with the 3'-UTR and controlling localized protein synthesis. To study mechanisms for trafficking of SUT1, GFP-fusions with and without 3'-UTR were expressed in transgenic plants.

Results

In contrast to plants expressing GFP from the strong SUC2 promoter, in RolC-controlled expression GFP is retained in companion cells. The 3'-UTR of SUT1 affected intracellular distribution of GFP but was insufficient for trafficking of SUT1, GFP or their fusions to SEs. Fusion of GFP to SUT1 did however lead to accumulation of SUT1-GFP in the CC, indicating that trafficking was blocked while translational inhibition of SUT1 mRNA was released in CCs.

Conclusion

A fusion with GFP prevents targeting of the sucrose transporter SUT1 to the SE while leading to accumulation in the CC. The 3'-UTR of SUT1 is insufficient for mobilization of either the fusion or GFP alone. It is conceivable that SUT1-GFP protein transport through PD to SE was blocked due to the presence of GFP, resulting in retention in CC particles. Alternatively, SUT1 mRNA transport through the PD could have been blocked due to insertion of GFP between the SUT1 coding sequence and 3'-UTR.
  相似文献   

12.
A subset of people exposed to a traumatic event develops post‐traumatic stress disorder (PTSD), which is associated with dysregulated fear behavior. Genetic variation in SLC18A2, the gene that encodes vesicular monoamine transporter 2 (VMAT2), has been reported to affect risk for the development of PTSD in humans. Here, we use transgenic mice that express either 5% (VMAT2‐LO mice) or 200% (VMAT2‐HI mice) of wild‐type levels of VMAT2 protein. We report that VMAT2‐LO mice have reduced VMAT2 protein in the hippocampus and amygdala, impaired monoaminergic vesicular storage capacity in both the striatum and frontal cortex, decreased monoamine metabolite abundance and a greatly reduced capacity to release dopamine upon stimulation. Furthermore, VMAT2‐LO mice showed exaggerated cued and contextual fear expression, altered fear habituation, inability to discriminate threat from safety cues, altered startle response compared with wild‐type mice and an anxiogenic‐like phenotype, but displayed no deficits in social function. By contrast, VMAT2‐HI mice exhibited increased VMAT2 protein throughout the brain, higher vesicular storage capacity and greater dopamine release upon stimulation compared with wild‐type controls. Behaviorally, VMAT2‐HI mice were similar to wild‐type mice in most assays, with some evidence of a reduced anxiety‐like responses. Together, these data show that presynaptic monoamine function mediates PTSD‐like outcomes in our mouse model, and suggest a causal link between reduced VMAT2 expression and fear behavior, consistent with the correlational relationship between VMAT2 genotype and PTSD risk in humans. Targeting this system is a potential strategy for the development of pharmacotherapies for disorders like PTSD.  相似文献   

13.
Petty HR 《Bio Systems》2006,83(2-3):217-224
Biological thought in the 20th century was dominated by the study of structures at increasingly minute levels. For biology to advance beyond structural reductionism and contribute its full measure to clinical care, living biological structures must be understood in the context of their collective chemical processes at the relevant chemical time-scales. Using high-speed fluorescence microscopy, we have studied intra- and inter-cellular signaling using shutter speeds ( approximately 100 ns) that remove the effects of wave motion and diffusion from optical images. By collecting a series of such images, stop-action movies of signal trafficking in living cells are created; these have revealed a new level of spatiotemporal chemical organization within cells. Numerous types of chemical waves have been found in living cells expressing a great variety of physical properties. In this article I will review some of these basic findings, discuss these events in the context of information trafficking, and illustrate the potential implications of this work in medicine.  相似文献   

14.
15.
Kim C 《Molecules and cells》2004,17(1):140-143
In Drosophila, the embryonic axes are specified during oogenesis by the asymmetric localization of certain mRNAs in the oocytes. In this process many of the mRNAs are synthesized in nurse cells and transported through cytoplasmic bridges called ring canals into the oocytes. However, the nature of the transporting particles and the route of their passage have not been not well defined. Here, I describe the ultrastructure of particles moving from nurse cells to oocytes. Immunoelectron microscopic observation with Mab27E7 monoclonal antibody revealed vesicular-tubular shaped (VTS) particles that appear to migrate to the cortical area and are then transported into the oocytes.  相似文献   

16.
The rate-limiting step in the uptake and metabolism of Dglucose by insulin target cells is thought to be glucose transport mediated by glucose transporters (primarily the GLUT4 isoform) localized to the plasma membrane. However, subcellular fractionation, photolabelling and immunocytochemical studies have shown that the pool of GLUT4 present in the plasma membrane is only one of many subcellular pools of this protein. GLUT4 has been found in occluded vesicles at the plasma membrane, clathrin-coated pits and vesicles, early endosomes, and tubulo-vesicular structures; the latter are analogous to known specialized secretory compartments. Tracking the movement of GLUT4 through these compartments, and defining the mechanism and site of action of insulin in stimulating this subcellular trafficking, are major topics of current investigation. Recent evidence focuses attention on the exocytosis of GLUT4 as the major site of insulin action. Increased exocytosis may be due to decreased retention of glucose transporters in an intracellular pool, or possibly to increased assembly of a vesicle docking and fusion complex. Although details are unknown, the presence in GLUT4 vesicles of a synaptobrevin homologue leads us to propose that a process analogous to that occurring in synaptic vesicle trafficking is involved in the assembly of GLUT4 vesicles into a form suitable for fusion with the plasma membrane. Evidence that the pathways of signalling from the insulin receptor and of GLUT4 vesicle exocytosis may converge at the level of the key signalling enzyme, phosphatidylinositol 3-kinase, is discussed.  相似文献   

17.
The retinal ganglion cell layer of the eye comprises a subtype of cells characterized by their intrinsic photosensitivity and expression of melanopsin (ipRGCs). These cells regulate a variety of non-image-forming (NIF) functions such as light entrainment of circadian rhythms, acute suppression of locomotor activity (masking), and pupillary light reflex. Two neurotransmitters have been identified in ipRGCs, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP). To date, little is known about their release and interplay. Here, we describe the presence and co-localization of vesicular glutamate transporter 2 (VGLUT2; a marker of glutamate signaling) and PACAP in ipRGCs and their projections in the brain. Nine adult male Wistar rats were assigned to one of three groups; anterograde tracing (n = 3), eye enucleation (n = 3), and untreated (n = 3). Under anaesthesia, rats were transcardially perfusion-fixated, after which the brains and eyes were removed for double immunohistochemical staining using a polyclonal anti-VGLUT2 antibody and a mouse monoclonal anti-PACAP antibody. Results revealed that VGLUT2- and PACAP-immunoreactivity (-ir) were present in ipRGCs and co-localized in their projections in the suprachiasmatic nucleus, the intergeniculate leaflet, and the olivary pretectal nucleus. We conclude that there is evidence to support the use of glutamate and PACAP as neurotransmitters in NIF photoperception by rat ipRGCs, and that these neurotransmitters are co-stored and probably released from the same nerve terminals. Furthermore, we conclude that VGLUT2 is the preferred subtype of vesicular transporter used by these cells.  相似文献   

18.
Root hairs and pollen tubes show strictly polar cell expansion called tip growth. Recent studies of tip growth in root hairs and pollen tubes have revealed that small GTPases of the Rab, Arf and Rho/Rac families, along with their regulatory proteins, are essential for spatio-temporal regulation of vesicular trafficking, cytoskeleton organization and signalling. ROP/RAC GTPases are involved in a multiplicity of functions including the regulation of cytoskeleton organization, calcium signalling and endocytosis in pollen tubes and root hairs. One of the most exciting recent discoveries is the preferential localization of vesicles of the trans-Golgi network (TGN), defined by specific RAB GTPases, in the apical "clear zone" and the definition of TGN as a bona fide organelle involved in both polarized secretion and endocytosis. The TGN is thought to serve the function of an early endosome in plants because it is involved in early endocytosis and rapid vesicular recycling of the plasma membrane in root epidermal cells.  相似文献   

19.
Apicomplexa in mammalian cells: trafficking to the parasitophorous vacuole   总被引:2,自引:0,他引:2  
Most Apicomplexa reside and multiply in the cytoplasm of their host cell, within a parasitophorous vacuole (PV) originating from both parasite and host cell components. Trafficking of parasite-encoded proteins destined to membrane compartments beyond the confine of the parasite plasma membrane is a process that offers a rich territory to explore novel mechanisms of protein–membrane interactions. Here, we focus on the PVs formed by the asexual stages of two pathogens of medical importance, Plasmodium and Toxoplasma . We compare the PVs of both parasites, with a particular emphasis on their evolutionary divergent compartmentalization within the host cell. We also discuss the existence of peculiar export mechanisms and/or sorting determinants that are potentially involved in the post-secretory targeting of parasite proteins to the PV subcompartments.  相似文献   

20.
In vivo trafficking and localization of p24 proteins in plant cells   总被引:1,自引:0,他引:1  
p24 proteins constitute a family of putative cargo receptors that traffic in the early secretory pathway. p24 proteins can be divided into four subfamilies (p23, p24, p25 and p26) by sequence homology. In contrast to mammals and yeast, most plant p24 proteins contain in their cytosolic C-terminus both a dilysine motif in the −3, −4 position and a diaromatic motif in the −7, −8 position. We have previously shown that the cytosolic tail of Arabidopsis p24 proteins has the ability to interact with ARF1 and coatomer (through the dilysine motif) and with COPII subunits (through the diaromatic motif). Here, we establish the localization and trafficking properties of an Arabidopsis thaliana p24 protein ( At p24) and have investigated the contribution of the sorting motifs in its cytosolic tail to its in vivo localization. At p24-red fluorescent protein localizes exclusively to the endoplasmic reticulum (ER), in contrast with the localization of p24 proteins in other eukaryotes, and the dilysine motif is necessary and sufficient for ER localization. In contrast, At p24 mutants lacking the dilysine motif are transported along the secretory pathway to the prevacuolar compartment and the vacuole, although a significant fraction is also found at the plasma membrane. Finally, we have found that ER export of At p24 is COPII dependent, while its ER localization requires COPI function, presumably for efficient Golgi to ER recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号