首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The PI3K (phosphoinositide 3-kinase) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small-molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we have demonstrated that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110alpha inhibitors were generally effective in inhibiting the phosphorylation of PKB (protein kinase B)/Akt and S6, two downstream components of PI3K signalling, in most cell lines examined. In contrast, p110beta-selective inhibitors only reduced PKB/Akt phosphorylation in PTEN (phosphatase and tensin homologue deleted on chromosome 10) mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing cell-cycle arrest in the G(1) phase, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell-cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signalling pathways. Taken together, our data indicate that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts.  相似文献   

3.
细胞的增殖、转移、存活等细胞生物学过程的异常对人类众多疾病尤其是恶性肿瘤的发生发展至关重要。大量研究表明,PI3K/AKT信号通路的异常激活在肿瘤的恶性转化过程中发挥重要作用并具有普遍意义。但是,目前的研究多集中于探讨AKT总的激酶活性,而往往忽视了AKT不同亚型的特异性功能。近年来在乳腺癌中的研究发现,AKT家族不同亚型的激酶分子在调控肿瘤细胞的存活、生长、增殖、代谢、转移等众多恶性表型方面发挥独特而关键的作用:与Akt1促进肿瘤细胞增殖、抑制肿瘤细胞转移的作用相反,Akt2在促进肿瘤细胞转移、抑制肿瘤细胞增殖方面发挥重要功能;此外,随着对AKT家族研究的深入,人们对Akt3的特异性生物学功能也有了新的认识。本文在此对AKT不同亚型与乳腺癌恶性表型之间关系的研究进展做一总结。  相似文献   

4.
There are more than 100 distinct types of cancer, and subtypes can be found within specific organs. Cancer progression is a complex multi-step process. These steps reflect alterations that drive the progressive transformation of normal cells into highly malignant ones. One critical step in tumor growth and invasion is the proteolytic processing of the extracellular matrix environment. The degradation of the extracellular matrix not only enables cell migration, invasion, and metastasis formation, but also affects cell behavior in multiple ways; on one hand by cleaving extracellular matrix bound growth factors and on the other hand by inhibiting angiogenesis into the tumor by liberating cryptic endogenous inhibitors of angiogenesis. Serine proteases and matrix metalloproteases are families of proteolytic enzymes involved in physiological and pathological extracellular matrix and basement membrane processing. In this review, we will focus on the role and activation of trypsinogens, a family of serine proteases, in cancer progression.  相似文献   

5.
6.
Cell surface proteases have been demonstrated to play an important role in facilitating cell invasion into the extracellular matrix and may contribute significantly to extracellular matrix degradation by metastatic cancer cells. Abundant expression of these enzymes is associated with poor prognosis. Thus, protease inhibitors that repress cell surface proteases may be applicable to cancer therapy. Because soybean Kunitz-type trypsin inhibitor has been found to induce apoptotic death of human leukemia Jurkat cells, anti-leukemia activity of Bungarus multicinctus protease inhibitor-like protein-1 (PILP-1) is thus examined. PILP-1 induced apoptosis of human leukemia U937 cells, characteristic of loss of mitochondrial membrane potential, degradation of procaspase-8, and production of t-Bid. FADD down-regulation neither restored viability of PILP-1-treated cells nor attenuated production of active caspase-8 and t-Bid in PILP-1-treated cells, suggesting that the death receptor-mediated pathway was not involved in the cytotoxicity of PILP-1. It was found that PILP-1-evoked p38 MAPK activation and ERK inactivation led to PILP-1-induced cell death and down-regulation of ADAM17. Knockdown of ADAM17 by siRNA induced death of U937 cells and inactivation of Lyn and Akt. Immunoprecipitation suggested that ADAM17 and Lyn form complexes. Overexpression of ADAM17, LynY507F (gain of function), and constitutively active Akt suppressed the cytotoxic effects of PILP-1. PILP-1-elicited inactivation of Lyn and Akt was abrogated in cells with overexpressed ADAM17 or LynY507F. Taken together, our data indicate that ADAM17-mediated activation of Lyn/Akt maintains the viability of U937 cells and that suppression of the pathway is responsible for PILP-1-induced apoptosis.  相似文献   

7.
Phase III trials of the anti-insulin-like growth factor-1 receptor (IGF1R) antibody figitumumab in non-small cell lung cancer (NSCLC) patients have been discontinued owing to lack of survival benefit. We investigated whether inhibition of the highly homologous insulin receptor (IR) in addition to the IGF1R would be more effective than inhibition of the IGF1R alone at preventing the proliferation of NSCLC cells. Signalling through IGF1R and IR in the NSCLC cell lines A549 and Hcc193 was stimulated by a combination of IGF1, IGF2 and insulin. It was inhibited by antibodies that block ligand binding, αIR3 (IGF1R) and IR47-9 (IR), and by the ATP-competitive small molecule tyrosine kinase inhibitors AZ12253801 and NVPAWD742 which inhibit both IGF1R and IR tyrosine kinases. The effect of inhibitors was determined by an anchorage-independent proliferation assay and by analysis of Akt phosphorylation. In Hcc193 cells the reduction in cell proliferation and Akt phosphorylation due to anti-IGF1R antibody was enhanced by antibody-mediated inhibition of the IR whereas in A549 cells, with a relatively low IR:IGF1R expression ratio, it was not. In each cell line proliferation and Akt phosphorylation were more effectively inhibited by AZ12253801 and NVPAWD742 than by combined αIR3 and IR47-9. When the IGF1R alone is inhibited, unencumbered signalling through the IR can contribute to continued NSCLC cell proliferation. We conclude that small molecule inhibitors targeting both the IR and IGF1R more effectively reduce NSCLC cell proliferation in a manner independent of the IR:IGF1R expression ratio, providing a therapeutic rationale for the treatment of this disease.  相似文献   

8.
This study was to evaluate the enhancement value of chloroquine (CQ) in cancer cell killing when used in combination with Akt inhibitors. The results showed that the combination of CQ and Akt inhibitors is much more effective than either one alone. Importantly, the CQ-mediated chemosensitization of cell killing effects by Akt inhibitors is cancer specific. In particular, when combined with 10 microM CQ, 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo[4,5-g]quinoxalin-7-yl)phenyl)methyl)-4-piperidinyl)-2H-benzimidazol-2-one (an Akt1 and 2 inhibitor; compound 8) killed cancer cells 10-120 times more effectively than normal cells. Thus, CQ is a very effective and cancer-specific chemosensitizer when used in combination with Akt inhibitors.  相似文献   

9.
10.
A constitutive and dynamic interaction between tumor cells and their surrounding stroma is a prerequisite for tumor invasion and metastasis. Fibroblasts and myofibroblasts (collectively called cancer associated fibroblasts, CAFs) often represent the major cellular components of tumor stroma. Tumor cells secret different growth factors which induce CAFs proliferation and differentiation, and, consequently, CAFs secrete different chemokines, cytokines or growth factors which induce tumor cell invasion and metastasis. In this study we showed here that CAFs from breast cancer surgical specimens significantly induced the invasion of breast cancer cells in vitro. Most interestingly, the novel multiple tyrosine kinase inhibitor Dovitinib significantly blocked the CAFs-induced invasion of breast cancer cells by, at least in part, inhibition of the expression and secretion of CCL2, CCL5 and VEGF in CAFs. Inhibition of PI3K/Akt/mTOR signaling could be responsible for the effects of Dovitinib, since Dovitinib antagonized the promoted phosphorylated Akt after treatment with PDGF, FGF or breast cancer cell-conditioned media. Treatment with Dovitinib in combination with PI3K/Akt/mTOR signaling inhibitors Ly294002 or RAD001 resulted in additive inhibition of cell invasion. This is the first in vitro study to show that the multiple tyrosine kinase inhibitor has therapeutic activities against breast cancer metastasis by targeting both tumor cells and CAFs.  相似文献   

11.
Although Akt is known as a survival kinase, inhibitors of the phosphatidylinositol 3-kinase (PI3K)–Akt pathway do not always induce substantial apoptosis. We show that silencing Akt1 alone, or any combination of Akt isoforms, can suppress the growth of tumors established from phosphatase and tensin homologue–null human cancer cells. Although these findings indicate that Akt is essential for tumor maintenance, most tumors eventually rebound. Akt knockdown or inactivation with small molecule inhibitors did not induce significant apoptosis but rather markedly increased autophagy. Further treatment with the lysosomotropic agent chloroquine caused accumulation of abnormal autophagolysosomes and reactive oxygen species, leading to accelerated cell death in vitro and complete tumor remission in vivo. Cell death was also promoted when Akt inhibition was combined with the vacuolar H+–adenosine triphosphatase inhibitor bafilomycin A1 or with cathepsin inhibition. These results suggest that blocking lysosomal degradation can be detrimental to cancer cell survival when autophagy is activated, providing rationale for a new therapeutic approach to enhancing the anticancer efficacy of PI3K–Akt pathway inhibition.  相似文献   

12.
There has been considerable interest in recent years in the anti-tumor activities of flavonoids. Quercetin, a ubiquitous bioactive flavonoid, can inhibit proliferation and induce apoptosis in a variety of cancer cells. However, the precise molecular mechanism by which quercetin induces apoptosis in cancer cells is poorly understood. The present study was undertaken to examine the effect of quercetin on cell viability and to determine its underlying mechanism in human glioma cells. Quercetin resulted in loss of cell viability in a dose- and time-dependent manner and the decrease in cell viability was mainly attributed to cell death. Quercetin did not increase reactive oxygen species (ROS) generation and the quercetin-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that quercetin treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Transient transfection with constitutively active forms of MEK and Akt protected against the quercetin-induced loss of cell viability. Quercetin-induced depolarization of mitochondrial membrane potential. Caspase activity was stimulated by quercetin and caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin resulted in a decrease in expression of survivin, antiapoptotic proteins. Taken together, these findings suggest that quercetin results in human glioma cell death through caspase-dependent mechanisms involving down-regulation of ERK, Akt, and survivin.  相似文献   

13.
Activating ras mutations are frequently found in malignant tumors of the pancreas, colon, lung and other tissues. RAS activates a number of downstream pathways that ultimately cause cellular transformation. Several recent studies suggested that one of those pathways involves Aurora kinases. Overexpression of Aurora‐B kinase can augment transformation by oncogenic RAS, however the mechanism was not determined. The cooperative effect of high levels of Aurora kinase is important since this kinase is frequently overexpressed in human tumors. We have used two Aurora kinase inhibitors to test their effect on RAS signaling. We find that these inhibitors have no effect on the phosphorylation of MEK1/2 or MAPK in response to RAS. Furthermore, inhibiting Aurora kinases in human cancer cells with or without activated RAS did not change the length of the cell cycle nor induce apoptosis suggesting that these kinases do not play a direct role in these key cellular responses to activated RAS. Overexpression of Aurora B can cause cells to become polyploid. Also, inducing polyploidy with cytochalasin D was reported to induce neoplastic transformation, suggesting that Aurora overexpression may cooperate with RAS indirectly by inducing polyploidy. We find that inducing polyploidy with cytochalasin D or blebbistatin does not enhance transformation by oncogenic RAS. Our observations argue against a direct role for Aurora kinases in the RAS‐MAPK pathway, and suggest that the polyploid state does not enhance transformation by RAS. J. Cell. Biochem. 106: 33–41, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
The objectives of this study were to evaluate the in vitro anti-tumor (human thyroid cancer cell lines) potential of curcumin and to elucidate its molecular mechanisms. Here, we investigated the effects of curcumin on the cell viability, apoptosis, migration and invasion of human thyroid cancer cell lines FTC133. We also investigated the effects of curcumin on PI3K, p-Akt, MMP1/7, and COX-2 protein expressions using Western blot. Results showed that curcumin inhibited growth, cell migration and invasion in FTC133, and promoted its apoptosis. Western blot assay data demonstrated that curcumin inhibited phosphorylation of PI3K and Akt signaling pathways and subsequently attenuated MMP1/7 and COX-2 protein expressions in FTC133. In conclusion, curcumin suppresses FTC133 cell invasion and migration by inhibiting PI3K and Akt signaling pathways. Therefore, curcumin produces anti-metastatic activity in FTC133 cells.  相似文献   

15.
A J Ridley  H F Paterson  M Noble    H Land 《The EMBO journal》1988,7(6):1635-1645
The cellular responses to ras and nuclear oncogenes were investigated in purified populations of rat Schwann cells. v-Ha-ras and SV40 large T cooperate to transform Schwann cells, inducing growth in soft agar and allowing proliferation in the absence of added mitogens. Expression of large T alone reduces their growth factor requirements but is insufficient to induce full transformation. In contrast, expression of v-Ha-ras leads to proliferation arrest in Schwann cells expressing a temperature-sensitive mutant of large T at the restrictive temperature. Cells arrest in either the G1 or G2/M phases of the cell cycle, and can re-enter cell division at the permissive temperature even after prolonged periods at the restrictive conditions. Oncogenic ras proteins also inhibit DNA synthesis when microinjected into Schwann cells. Adenovirus E1a and c-myc oncogenes behave similarly to SV40 large T. They cooperate with Ha-ras oncogenes to transform Schwann cells, and prevent ras-induced growth arrest. Thus nuclear oncogenes fundamentally alter the response of Schwann cells to a ras oncogene from cell cycle arrest to transformation.  相似文献   

16.
Non-melanoma skin cancer (NMSC) is the most common type of skin cancer in Caucasian populations. Its increasing incidence has been a major public health concern. Elevated expressions of ODC and COX-2 are associated with both murine and human NMSCs. Inhibition of these molecular targets singly employing their respective small molecule inhibitors showed limited success. Here, we show that combined blockade of ODC and COX-2 using their potent inhibitors, DFMO and diclofenac respectively abrogates growth of A431 epidermal xenograft tumors in nu/nu mice by more than 90%. The tumor growth inhibition was associated with a diminution in the proliferation and enhancement in apoptosis. The proliferation markers such as PCNA and cyclin D1 were reduced. TUNEL-positive apoptotic cells and cleaved caspase-3 were increased in the residual tumors. These agents also manifested direct target-unrelated effects. Reduced expression of phosphorylated MAPKAP-2, ERK, and Akt (ser473 & thr308) were noticed. The mechanism by which combined inhibition of ODC/COX attenuated tumor growth and invasion involved reduction in EMT. Akt activation by ODC+COX-2 over-expression was the key player in this regard as Akt inhibition manifested effects similar to those observed by the combined inhibition of ODC+COX-2 whereas forced over-expression of Akt resisted against DFMO+diclofenac treatment. These data suggest that ODC+COX-2 over-expression together leads to pathogenesis of aggressive and invasive cutaneous carcinomas by activating Akt signaling pathway, which through augmenting EMT contributes to tumor invasion.  相似文献   

17.
Ras and Akt are signaling proteins that mediate fundamental aspects of normal growth and development in many organisms. When the Ras and Akt pathways become overly active, malignant transformation of normal tissue can occur. The combined activity of these two proteins has generated the transformation of human cell cultures and tumor formation in mice. In this review we highlight malignant glioma as a tumor type in which Ras and Akt pathways cooperate to cause tumorigenesis and regulate translation. The downstream components of these pathways have provided therapeutic targets that are currently being tested in clinical trials.  相似文献   

18.
Arachidonic acid (AA) and its metabolites are intimately linked to carcinogenesis. Inhibitors of AA metabolic enzymes have demonstrated anti-carcinogenic effects in vivo and induce apoptosis of many cancer cell lines in vitro. The mechanism by which AA influences carcinogenesis, however, remains unresolved. The current study explores the growth inhibitory potential of Triacsin C, PLT-98625, and NS-398 which inhibit three distinct metabolic enzymes that control intracellular AA levels: fatty acid coenzyme-A ligase 4 (FACL-4), coenzyme-A independent transacylase (CoA-IT), and cyclooxygenase (COX), respectively. Results reveal the anti-proliferative effects of these inhibitors in a number of human cancer cell lines. Further studies in the SK-MES-1 cell line demonstrate that all three inhibitors induce accumulation of unesterified AA which correlates with induction of apoptosis. Addition of exogenous AA also induces apoptosis. Furthermore, in combination, these inhibitors act cooperatively to induce AA accumulation which correlates to a synergistic reduction in cell viability. Taken together, these results suggest that accumulation of unesterified AA is a common mechanism in the induction of cancer cell apoptosis by various inhibitors of AA metabolism, confirm that previously described AA remodeling pathways are valid in cancer cells, and indicate that combination treatment strategies utilizing these inhibitors may represent a novel approach to blocking cancer cell growth. Further study is required to determine the downstream pathway(s) whereby high cellular burdens of unesterified AA promote apoptosis.  相似文献   

19.

Background

Heparan sulfate proteoglycans (HSPGs) modulate the binding and activation of signaling pathways of specific growth factors, such as fibroblast growth factor-2 (FGF-2). Human endosulfatase 1 (HSULF-1) is an enzyme that selectively removes 6-O sulfate groups from HS side chains and alter their level and pattern of sulfation and thus biological activity. It is known that HSULF-1 is expressed at low levels in some cancer cell lines and its enhanced expression can inhibit cancer cell growth or induce apoptosis, but the mechanism(s) involved has not been identified.

Methods

HSULF-1 mRNA expression was assessed in five normal cells (primary human lung alveolar type 2 (hAT2) cells, adult lung fibroblasts (16Lu), fetal lung fibroblasts (HFL), human bronchial epithelial cells (HBE), and primary human lung fibroblasts (HLF)) and five lung cancer cell lines (A549, H292, H1975, H661, and H1703) using quantitative real time polymerase chain reaction (qRT-PCR). H292 and hAT2 cells over-expressing HSULF-1 were analyzed for cell viability, apoptosis, and ERK/Akt signaling, by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, and Western Blot, respectively. Apoptosis pathway activation was confirmed by PCR array in hAT2, H292, and A549 cells.

Results

HSULF-1 was expressed at a significantly lower level in epithelial cancer cell lines compared to normal cells. Infection with recombinant adenovirus for HSULF-1 over-expression resulted in decreased cell viability in H292 cells, but not in normal hAT2 cells. HSULF-1 over-expression induced apoptosis in H292 cells, but not in hAT2 cells. In addition, apoptosis pathways were activated in both H292 and A549 cells, but not in hAT2 cells. HSULF-1 over-expression reduced ERK and Akt signaling activation in H292 cells, which further demonstrated its inhibitory effects on signaling related to proliferation.

Conclusions

These results indicate that HSULF-1 is expressed at lower levels in H292 lung cancer cells than in normal human alveolar cells and that its over-expression reduced cell viability in H292 cells by inducing apoptotic pathways, at least in part by inhibiting ERK/Akt signaling. We hypothesize that HSULF-1 plays important roles in cancer cells and functions to modify cell signaling, inhibit cancer proliferation, and promote cancer cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号