共查询到20条相似文献,搜索用时 0 毫秒
1.
Comment on: Travesa A, et al. EMBO J 2012; 31:1811-22. 相似文献
2.
3.
4.
5.
6.
Néstor García‐Rodríguez Magdalena Morawska Ronald P Wong Yasukazu Daigaku Helle D Ulrich 《The EMBO journal》2018,37(9)
Polymerase‐blocking DNA lesions are thought to elicit a checkpoint response via accumulation of single‐stranded DNA at stalled replication forks. However, as an alternative to persistent fork stalling, re‐priming downstream of lesions can give rise to daughter‐strand gaps behind replication forks. We show here that the processing of such structures by an exonuclease, Exo1, is required for timely checkpoint activation, which in turn prevents further gap erosion in S phase. This Rad9‐dependent mechanism of damage signaling is distinct from the Mrc1‐dependent, fork‐associated response to replication stress induced by conditions such as nucleotide depletion or replisome‐inherent problems, but reminiscent of replication‐independent checkpoint activation by single‐stranded DNA. Our results indicate that while replisome stalling triggers a checkpoint response directly at the stalled replication fork, the response to replication stress elicited by polymerase‐blocking lesions mainly emanates from Exo1‐processed, postreplicative daughter‐strand gaps, thus offering a mechanistic explanation for the dichotomy between replisome‐ versus template‐induced checkpoint signaling. 相似文献
7.
8.
9.
10.
‘BRCAness’ is a term used to describe cancer cells that behave similarly to tumors with BRCA1 or BRCA2 mutations. The BRCAness phenotype is associated with hypersensitivity to chemotherapy agents including PARP inhibitors, which are a promising class of recently-licensed anti-cancer treatments. This hypersensitivity arises because of a deficiency in the homologous recombination (HR) pathway for DNA double-strand break repair. To gain further insight into how genetic modifiers of HR contribute to the BRCAness phenotype, we created a new mouse model of BRCAness by generating mice that are deficient in BLM helicase and the Exo1 exonuclease, which are involved in the early stages of HR. We find that cells lacking BLM and Exo1 exhibit a BRCAness phenotype, with diminished HR, and hypersensitivity to PARP inhibitors. We further tested how 53BP1, an important regulator of HR, affects repair efficiency in our BRCAness model. We find that deletion of 53BP1 can relieve several of the repair deficiencies observed in cells lacking BLM and Exo1, just as it does in cells lacking BRCA1. These results substantiate the importance of BRCAness as a concept for classification of cancer cases, and further clarify the role of 53BP1 in regulation of DNA repair pathway choice in mammalian cells. 相似文献
11.
How the cellular amount of mitochondrial DNA (mtDNA) is regulated under normal conditions and in the presence of genotoxic
stress is less understood. We demonstrate that the inefficient mtDNA replication process of mutant yeast cells lacking the
PIF1 DNA helicase is partly rescued in the absence of the DNA helicase RRM3. The rescue effect is likely due to the increase in the deoxynucleoside triphosphates (dNTPs) pool caused by the lack of
RRM3. In contrast, the Pif1p-dependent mtDNA breakage in the presence and absence of genotoxic stress is not suppressed if RRM3 is lacking suggesting that this phenotype is likely independent of the dNTP pool. Pif1 protein (Pif1p) was found to stimulate
the incorporation of dNTPs into newly synthesised mtDNA of gradient-purified mitochondria. We propose that Pif1p that acts
likely as a DNA helicase in mitochondria affects mtDNA replication directly. Possible roles of Pif1p include the resolution
of secondary DNA and/or DNA/RNA structures, the temporarily displacement of tightly bound mtDNA-binding proteins, or the stabilization
of the mitochondrial replication complex during mtDNA replication.
X. Cheng, Y. Qin contributed equally to this work. 相似文献
12.
Mythili Yenjerla Andreas Panopoulos Caroline Reynaud Rati Fotedar Robert L. Margolis 《Cell cycle (Georgetown, Tex.)》2013,12(5):837-838
Comment on: Fu G, et al. Sci Signal. 2011; 4:ra84. 相似文献
13.
DNA replication is tightly regulated during the S phase of the cell cycle, and the activation of the intra-S-phase checkpoint due to DNA damage usually results in arrest of DNA synthesis. However, the molecular details about the correlation between the checkpoint and regulation of DNA replication are still unclear. To investigate the connections between DNA replication and DNA damage checkpoint, a DNA-damage reagent, tripchlorolide, was applied to CHO (Chinese ovary hamster) cells at early- or middle-stages of the S phase. The early-S-phase treatment with TC signifi-cantly delayed the progression of the S phase and caused the phosphorylation of the Chk 1 checkpoint protein, whereas the middle-S-phase treatment only slightly slowed down the progression of the S phase. Furthermore, the analysis of DNA replication patterns revealed that replication pattern II was greatly prolonged in the cells treated with the drug during the early-S phase, whereas the late-replication patterns of these cells were hardly detected, suggesting that the activation of the intra-S-phase checkpoint inhibits the late-origin firing of DNA replication. We conclude that cells at different stages of the S phase are differentially sensitive to the DNA-damage reagent, and the activation of the intra-S-phase checkpoint blocks the DNA replication progression in the late stage of S phase. 相似文献
14.
Qiongqiong Chen Decai LiJian Ren Chenghua Li Zhi-Xiong Xiao 《Biochemical and biophysical research communications》2013
The MUC1 transmembrane glycoprotein is aberrantly overexpressed in diverse human carcinomas and has been shown to inhibit apoptosis induced by genotoxic agents. In the present work, we report that MUC1 binds to and activates JNK1, an important member of the mitogen-activated protein kinases (MAPK) superfamily. The physical interaction between MUC1 cytoplasmic domain (MUC1-CD) and JNK1 was established by GST-pull-down assay in vitro and co-immunoprecipitation assay in vivo. We show that MUC1 activates JNK1 and inhibits cisplatin-induced apoptosis in human colon cancer HCT116 cells. Pharmacological inhibition of JNK or knockdown of JNK significantly reduces the ability of MUC1 to inhibit cisplatin-induced apoptosis. Together, our data indicate that MUC1 can inhibit apoptosis via activating JNK1 pathway in response to genotoxic anticancer agents. 相似文献
15.
细胞周期是高度有组织的时序调控过程,受到DNA损伤检控点、DNA复制检控点和纺锤体检控点等细胞周期检控点的精确调控。细胞周期检控点的作用主要是调节细胞周期的时序转换,以确保DNA复制、染色体分离等细胞重要生命活动的高度精确性,并对DNA损伤、DNA复制受阻、纺锤体组装和染色体分离异常等细胞损伤及时做出反应,以防止突变和遗传不稳定的发生。细胞周期检控点的功能缺陷,将导致细胞基因组的不稳定,与细胞癌变密切相关。因此细胞周期检控点对于维持细胞遗传信息的稳定性和完整性以及防止细胞癌变和遗传疾病的发生起着至关重要的作用。 相似文献
16.
17.
18.
19.
20.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway. 相似文献