首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protease-activated receptors (PARs) are a unique family of G-protein coupled receptors. PAR4, the most recently identified PAR member, was reported to be overexpressed during the progression of colon and prostate cancers. Though PAR4 mRNA was detected in normal stomach, the role of PAR4 in gastric cancer has not been investigated. In this study, differential expression of PAR4 was measured by real-time PCR (n=28) and tissue microarrays (n=74). We showed that PAR4 was located from basal to middle portions of normal gastric mucosa. PAR4 expression was remarkably decreased in gastric cancer tissues as compared with matched noncancerous tissues, especially in positive lymph node or low differentiation cancers. Furthermore, methylation of the PAR4 promoter in cell lines was assessed by treatment with 5-aza-2'-deoxycytidine and genomic bisulfite sequencing. AGS and N87 human gastric cancer cell lines did not express PAR4, as compared to HT-29 human colon cancer cell line with significant PAR4 expression. Treatment with 5-aza-2'-deoxycytidine restored PAR4 expression in AGS and N87 cells, which exhibited significantly more 5-methylcytosines in the PAR4 promoter compared with HT-29 cells. Our results revealed that down-regulation of PAR4 expression occurs frequently in gastric cancers and exhibits association with more aggressive gastric cancer. Interestingly, the loss of PAR4 expression in gastric cancers may result from hypermethylation of the PAR4 promoter.  相似文献   

3.

Background

Activin receptor 2 (ACVR2) is commonly mutated in microsatellite unstable (MSI) colon cancers, leading to protein loss, signaling disruption, and larger tumors. Here, we examined activin signaling disruption in microsatellite stable (MSS) colon cancers.

Methods

Fifty-one population-based MSS colon cancers were assessed for ACVR1, ACVR2 and pSMAD2 protein. Consensus mutation-prone portions of ACVR2 were sequenced in primary cancers and all exons in colon cancer cell lines. Loss of heterozygosity (LOH) was evaluated for ACVR2 and ACVR1, and ACVR2 promoter methylation by methylation-specific PCR and bisulfite sequencing and chromosomal instability (CIN) phenotype via fluorescent LOH analysis of 3 duplicate markers. ACVR2 promoter methylation and ACVR2 expression were assessed in colon cancer cell lines via qPCR and IP-Western blots. Re-expression of ACVR2 after demethylation with 5-aza-2′-deoxycytidine (5-Aza) was determined. An additional 26 MSS colon cancers were assessed for ACVR2 loss and its mechanism, and ACVR2 loss in all tested cancers correlated with clinicopathological criteria.

Results

Of 51 MSS colon tumors, 7(14%) lost ACVR2, 2 (4%) ACVR1, and 5(10%) pSMAD2 expression. No somatic ACVR2 mutations were detected. Loss of ACVR2 expression was associated with LOH at ACVR2 (p<0.001) and ACVR2 promoter hypermethylation (p<0.05). ACVR2 LOH, but not promoter hypermethylation, correlated with CIN status. In colon cancer cell lines with fully methylated ACVR2 promoter, loss of ACVR2 mRNA and protein expression was restored with 5-Aza treatment. Loss of ACVR2 was associated with an increase in primary colon cancer volume (p<0.05).

Conclusions

Only a small percentage of MSS colon cancers lose expression of activin signaling members. ACVR2 loss occurs through LOH and ACVR2 promoter hypermethylation, revealing distinct mechanisms for ACVR2 inactivation in both MSI and MSS subtypes of colon cancer.  相似文献   

4.
Identifying key mediators of cancer cell invasion and metastasis is critical to the development of more effective cancer therapies. We previously identified Filamin A interacting protein 1-like (FILIP1L) as an important inhibitor of cell migration and invasion in ovarian cancer. FILIP1L expression was inversely correlated with the invasive potential of ovarian cancer cell lines and ovarian cancer specimens. We also demonstrated that DNA methylation in the FILIP1L promoter was a mechanism by which FILIP1L was down-regulated in ovarian cancer. In our present study, we tested this observation in other cancer histologies: breast, colon, lung and pancreatic cancers. Both mRNA and protein expression of FILIP1L were down-regulated in these cancer cells compared with their normal epithelial cells. As in ovarian cancer, DNA methylation is a mechanism by which FILIP1L is down-regulated in these cancer histologies. Methylation status of the FILIP1L promoter was inversely correlated with FILIP1L expression. Reduced methylation in the FILIP1L promoter following treatment with a DNA demethylating agent was associated with restoration of FILIP1L expression in these cancer cells. Further, FILIP1L expression was inversely correlated with the invasive potential of these cancer cells. Re-expression of FILIP1L in FILIP1L-low expressing, highly-invasive cancer cell lines resulted in inhibition of cell invasion. Correspondingly, knockdown of FILIP1L in FILIP1L-high expressing, low-invasive cancer cell lines resulted in increase of cell invasion. Overall, these findings suggest that down-regulation of FILIP1L associated with DNA methylation is related with the invasive phenotype in various cancers. Thus, modulation of FILIP1L expression has the potential to be a target for cancer therapy.  相似文献   

5.
6.
The human cell-surface antigen epithelial glycoprotein-2 recognized by the monoclonal antibody MOC-31 is an epithelial tumour-associated glycoprotein expressed in non-squamous carcinomas. MOC-31 immunoreactivity was investigated in human breast, colon, ovarian and lung cancer cell lines, grown either in vitro or in severe combined immunodeficient (SCID) mice as solid tumours and/or metastases. Three of four small-cell lung cancer cell lines (NCI-H69, OH3 and SW2) and three of four ovarian cancer cell lines (SoTü 1, 3 and 4) expressed epithelial glycoprotein-2. In contrast, all three breast (MCF-7, BT20, T47D) and all three colon (HT29, CACO2, SW480) cancer cell lines strongly reacted with monoclonal antibody MOC-31. A notable difference in MOC-31 immunoreactivity was observed in spontaneously formed lung metastases of HT29 colon cancer cells. Whereas larger metastases (> 30 cells) re acted with a similar staining pattern to the primary tumour, smaller metastases did not. These findings indicate that differentiation processes during the epithelial–mesenchymal transition occur in metastases, which lead to a transient loss of epithelial glycoprotein-2 expression during the migratory and early post- migratory period. This loss of antigen expression indicates that the process of metastases formation is a regulatory event, and this transient loss of antigen expression might represent a potential obstacle to antibody-based therapy in the setting of minimal residual disease.  相似文献   

7.
8.
9.
The human insulin-like growth factor-I (IGF-I) gene contains two alternative leader exons: exons 1 and 2. We have identified, by transient transfection experiments, the putative promoters P1 and P2 upstream of these leader exons. The promoter regions were cloned in front of the luciferase reporter gene and their promoter activities were measured in transfected SK-N-MC (human neuroepithelioma) and OVCAR-3 (human ovarian carcinoma) cells. Both of these cell lines express the IGF-I gene endogenously, resulting in normally sized IGF-I mRNAs of 7.6, 1.3 and 1.1 kb. In SK-N-MC cells, in which P1 is the most active IGF-I promoter, P2 displayed a three times lower promoter activity than P1. However, in OVCAR-3 cells, P2 is four times more active than P1, resulting in an overall 12-fold difference in the relative promoter activities of the two IGF-I gene promoters in these two cell types. This indicates that the IGF-I promoters show a cell type-specific expression pattern.  相似文献   

10.
11.
A possible epigenetic regulation of the two isoenzymes of fructose 1,6-bisphosphatase (FBPase) was studied in liver, muscle, mamma, breast cancer and in different cancer cell lines. Results obtained after bisulfite sequencing revealed a different CpG methylation of both promoters in liver, muscle and breast tissue which is putatively involved in the cell-type specific gene expression of the two enzymes. In tumor cell lines, demethylation with 5-aza-deoxycytidine activated the expression of both isoenzymes. Additional inhibition of histone deacetylase with trichostatin A further increased FBPase mRNA concentrations. Since cancers typically have an abnormal energy metabolism and exhibit a low gluconeogenic phenotype, it was studied whether promoter methylation contributes to the decreased expression of FBPase in breast cancer. When non-malignant and malignant tissue samples from the same patient were compared a correlation between an increase of FBPase promoter methylation and a decrease of FBPase mRNA levels was observed.  相似文献   

12.
Alterations of Eph receptor tyrosine kinases are frequent events in human cancers. Genetic variations of EPHB6 have been described but the functional outcome of these alterations is unknown. The current study was conducted to screen for the occurrence and to identify functional consequences of EPHB6 mutations in non-small cell lung cancer. Here, we sequenced the entire coding region of EPHB6 in 80 non-small cell lung cancer patients and 3 tumor cell lines. Three potentially relevant mutations were identified in primary patient samples of NSCLC patients (3.8%). Two point mutations led to instable proteins. An in frame deletion mutation (del915-917) showed enhanced migration and accelerated wound healing in vitro. Furthermore, the del915-917 mutation increased the metastatic capability of NSCLC cells in an in vivo mouse model. Our results suggest that EPHB6 mutations promote metastasis in a subset of patients with non-small cell lung cancer.  相似文献   

13.
《Epigenetics》2013,8(5):602-609
Gap junctions are specialized plasma membrane domains consisting of channels formed by members of the connexin protein family. Gap junctional intercellular communication is often lost in cancers due to aberrant localization or downregulation of connexins, and connexins are therefore suggested to act as tumor suppressor genes in various tissues. The aim of this study was to investigate the expression pattern and DNA promoter methylation status of connexins in colorectal cancer. Expression of six (GJA1, GJA9, GJB1, GJB2, GJC1 and GJD3) connexin genes was detected in normal colonic tissue samples. GJC1 expression was reduced in colorectal carcinomas compared to normal tissue samples. All analyzed connexins were hypermethylated in colon cancer cell lines, although at various frequencies. GJA4, GJB6 and GJD2 were hypermethylated in 60% (29/48), 25% (12/48) and 96% (46/48) of primary colorectal carcinomas, respectively. However, the methylation status was not associated with gene expression. GJC1 has two alternative promoters, which were methylated in 42% (32/76) and 38% (25/65) of colorectal tumors, and in none of the normal mucosa samples. Expression of GJC1 was significantly lower in methylated compared with unmethylated samples (p < 0.01) and was restored in cell lines treated with the demethylating drug 5-aza-2'deoxycytidine. Taken together, DNA hypermethylation of the promoter region of GJC1, encoding connexin45, is an important mechanism in silencing gene expression in colorectal cancer.  相似文献   

14.
15.
目的:应用TaqmanqPCR技术检测CDl47/basigin剪接变异体在人上皮性卵巢癌组织与正常卵巢组织中的表达差异。方法:运用半定量RT.PCR技术检测CDl47/basigin剪接变异体在上皮性卵巢癌细胞系中的表达;TaqmanqPCR检测CDl47/basigin剪接变异体在人上皮性卵巢癌细胞系中的表达分布;进一步通过收集32例上皮性卵巢癌组织与26例正常卵巢组织,提取组织RNA,反转录cDNA,TaqmanqPCR检测CDl47/basigin剪接变异体mRNA在上皮性卵巢癌组织与正常卵巢组织中的表达差异。结果:半定量RT-PCR结果显示basigin-2,basigin-3和basigin-4在上皮性卵巢癌细胞系中均有表达,主要以basigin-2为主;TaqmanqPCR检测到三种剪接变异体在不同卵巢癌细胞系中表达不同,basigin-2在卵巢癌细胞系中较basigin一3,basigin-4表达较高,basigin一4较basigin.3略高;Basigin.2剪接变异体在高转移Ho.8910pm细胞中表达较高,在低转移HO一8910细胞中表达较低。组织TaqmanqPCR检测basigin-2和basigin-4在上皮性卵巢癌组织中的表达水平显著高于正常卵巢组织(P值分别为〈0.0001和0.0261),basigin.3的表达水平略有升高(P=0.2616),但无统计学意义。结论:三种剪接变异体在卵巢癌组织中较正常卵巢组织表达上调。CDl47/basigin.2在高转移卵巢癌细胞系HO-8910pm中高表达,在低转移卵巢癌细胞系HO-8910中低表达,且表达强度与上皮性卵巢癌的转移相关;探讨CDl47/basigin一2在上皮性卵巢癌中的高表达,为卵巢癌的进一步治疗开辟一新途径。  相似文献   

16.
17.
Replicating parvoviruses that target colon cancer cells   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

18.
Many cancers have constitutively activated NFkappaB, the elevation of which contributes to cancer cell resistance to chemotherapeutic agent-induced apoptosis. Although mitogen-activated protein kinase/extracellular-regulated kinase kinase kinase-3 (MEKK3) has been shown to participate in the activation of NFkappaB, its relations to apoptosis and cancer are unclear. In this study, we established cell model systems to examine whether stable expression of MEKK3 could lead to increased NFkappaB activity and confer resistance to apoptosis. In addition, we investigated in breast and ovarian cancers whether MEKK3 expression may be altered and correlated with aberrant NFkappaB activity. We show that stable cell lines overexpressing MEKK3 not only had elevated levels of NFkappaB binding activity but also were more responsive to cytokine stimulation. These stable cells showed 2-4-fold higher basal expression of Bcl-2 and xIAP than the parental cells. Consistent with this increased expression of cell survival genes, MEKK3 stable cells showed reduced activation of caspases 3 and 8 and poly(ADP-ribose) polymerase cleavage and dramatically increased resistance to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand, doxorubicin, daunorubicin, camptothecin, and paclitaxel. Intriguingly, analysis of human breast and ovarian cancers showed that a significant fraction of these samples have elevated MEKK3 protein levels with corresponding increases in NFkappaB binding activities. Thus, our results established that elevated expression of MEKK3 appears to be a frequent occurrence in breast and ovarian cancers and that overexpression of MEKK3 in cells leads to increased NFkappaB activity and increased expression of cell survival factors and ultimately contributes to their resistance to apoptosis. As such, MEKK3 may serve as a therapeutic target to control cancer cell resistance to cytokine- or drug-induced apoptosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号