首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lower levels of LINE-1 methylation in peripheral blood have been previously associated with risk of developing non-communicable conditions, the most well-explored of these being cancer, although recent research has begun to link altered LINE-1 methylation and cardiovascular disease. We examined the relationship between LINE-1 methylation and factors associated with metabolic and cardiovascular diseases through quantitative bisulfite pyrosequencing in DNA from peripheral blood samples from participants of the Samoan Family Study of Overweight and Diabetes (2002–03). The sample included 355 adult Samoans (88 men and 267 women) from both American Samoa and Samoa. In a model including all sample participants, men had significantly higher LINE-1 methylation levels than women (p = 0.04) and lower levels of LINE-1 methylation were associated with higher levels of fasting LDL (p = 0.02) and lower levels of fasting HDL (p = 0.009). The findings from this study confirm that DNA “global” hypomethylation (as measured by methylation at LINE-1 repeats) observed previously in cardiovascular disease is associated with altered levels of LDL and HDL in peripheral blood. Additionally, these findings strongly argue the need for further research, particularly including prospective studies, in order to understand the relationship between LINE-1 DNA methylation measured in blood and risk factors for cardiovascular disease.Key words: cardiovascular disease, HDL, LDL, LINE-1, DNA methylation, Samoa  相似文献   

2.
With the goal of investigating if epigenetic biomarkers from white blood cells (WBC) are associated with dietary, anthropometric, metabolic, inflammatory and oxidative stress parameters in young and apparently healthy individuals. We evaluated 156 individuals (91 women, 65 men; age: 23.1±3.5 years; body mass index: 22.0±2.9 kg/m2) for anthropometric, biochemical and clinical markers, including some components of the antioxidant defense system and inflammatory response. DNA methylation of LINE-1, TNF-α and IL-6 and the expression of some genes related to the inflammatory process were analyzed in WBC. Adiposity was lower among individuals with higher LINE-1 methylation. On the contrary, body fat-free mass was higher among those with higher LINE-1 methylation. Individuals with higher LINE-1 methylation had higher daily intakes of calories, iron and riboflavin. However, those individuals who presented lower percentages of LINE-1 methylation reported higher intakes of copper, niacin and thiamin. Interestingly, the group with higher LINE-1 methylation had a lower percentage of current smokers and more individuals practicing sports. On the other hand, TNF-α methylation percentage was negatively associated with waist girth, waist-to-hip ratio and waist-to-stature ratio. Plasma TNF-α levels were lower in those individuals with higher TNF-α methylation. This study suggests that higher levels of LINE-1 and TNF-α methylation are associated with better indicators of adiposity status in healthy young individuals. In addition, energy and micronutrient intake, as well as a healthy lifestyle, may have a role in the regulation of DNA methylation in WBC and the subsequent metabolic changes may affect epigenetic biomarkers.  相似文献   

3.
《Epigenetics》2013,8(6):606-614
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.  相似文献   

4.
《Epigenetics》2013,8(3):222-228
BACKGROUND: Lower blood DNA methylation has been associated with atherosclerosis and high cardiovascular risk. Mechanisms linking DNA hypomethylation to increased cardiovascular risk are still largely unknown. In a population of community-dwelling elderly individuals, we evaluated whether DNA methylation in LINE-1 repetitive element, heavily methylated sequences dispersed throughout the human genome, was associated with circulating Vascular Cell Adhesion Molecule-1 (VCAM-1), Inter- Cellular Adhesion Molecule-1 (ICAM-1), and C-reactive protein (CRP). METHODS AND RESULTS: We measured LINE-1 methylation by bisulfite PCR-Pyrosequencing on 742 blood DNA samples from male participants in the Boston area Normative Aging Study (mean age=74.8 years). Mean serum VCAM-1 increased progressively in association with LINE-1 hypomethylation (from 975.2 to 1063.4 ng/ml in the highest vs. lowest methylation quintiles; ptrend= 0.004). The association between VCAM-1 and LINE-1 hypomethylation was significant in individuals without ischemic heart disease or stroke (n=480; p=0.001), but not in those with prevalent disease (n=262; p=0.57). Serum ICAM-1 and CRP were not associated with LINE-1 methylation (p-trend=>0.25). All results were confirmed by multivariable analyses adjusting for age, BMI, smoking, pack-years, and ischemic heart disease/stroke. CONCLUSIONS: LINE-1 element hypomethylation is associated with higher serum VCAM-1. Our data provide new insights into epigenetic events that may accompany the development of cardiovascular disease.  相似文献   

5.
《Epigenetics》2013,8(11):1504-1510
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution.  相似文献   

6.
Altered levels of global DNA methylation and gene silencing through methylation of promoter regions can impact cancer risk, but little is known about their environmental determinants. We examined the association between lifestyle factors and levels of global genomic methylation and IL-6 promoter methylation in white blood cell DNA of 165 cancer-free subjects, 18–78 years old, enrolled in the COMIR (Commuting Mode and Inflammatory Response) study, New York, 2009–2010. Besides self-administrated questionnaires on diet and physical activity, we measured weight and height, white blood cell (WBC) counts, plasma levels of high sensitivity C-reactive protein (hs-CRP), and genomic (LINE-1) and gene-specific methylation (IL-6) by pyrosequencing in peripheral blood WBC. Mean levels of LINE-1 and IL-6 promoter methylation were 78.2% and 57.1%, respectively. In multivariate linear regression models adjusting for age, gender, race/ethnicity, body mass index, diet, physical activity, WBC counts and CRP, only dietary folate intake from fortified foods was positively associated with LINE-1 methylation. Levels of IL-6 promoter methylation were not significantly correlated with age, gender, race/ethnicity, body mass index, physical activity or diet, including overall dietary patterns and individual food groups and nutrients. There were no apparent associations between levels of methylation and inflammation markers such as WBC counts and hs-CRP. Overall, among several lifestyle factors examined in association with DNA methylation, only dietary folate intake from fortification was associated with LINE-1 methylation. The long-term consequence of folate fortification on DNA methylation needs to be further evaluated in longitudinal settings.  相似文献   

7.
High-density lipoproteins cholesterol (HDL-C) level, a strong coronary artery disease (CAD) clinical biomarker, shows significant interindividual variability. However, the molecular mechanisms involved remain mostly unknown. ATP-binding cassette A1 (ABCA1) catalyzes the cholesterol transfer from peripheral cells to nascent HDL particles. Recently, a differentially methylation region was identified in ABCA1 gene promoter locus, near the first exon. Therefore, we hypothesized that DNA methylation changes at ABCA1 gene locus is one of the molecular mechanisms involved in HDL-C interindividual variability. The study was conducted in familial hypercholesterolemia (FH), a monogenic disorder associated with a high risk of CAD . Ninety-seven FH patients (all p.W66G for the LDLR gene mutation and not under lipid-lowering treatment) were recruited and finely phenotyped for DNA methylation analyses at ABCA1 gene locus. ABCA1 DNA methylation levels were found negatively correlated with circulating HDL-C (r = -0.20; p = 0.05), HDL2-phospholipid levels (r = -0.43; p = 0.04), and with a trend for association with HDL peak particle size (r = -0.38; p = 0.08). ABCA1 DNA methylation levels were also found associated with prior history of CAD (CAD = 40.2% vs. without CAD = 34.3%; p = 0.003). These results suggest that epigenetic changes within the ABCA1 gene promoter contribute to the interindividual variability in plasma HDL-C concentrations and are associated with CAD expression. These findings could change our understanding of the molecular mechanisms involved in the pathophysiological processes leading to CAD.  相似文献   

8.
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.  相似文献   

9.
《Epigenetics》2013,8(10):1133-1141
Aberrations in global LINE-1 DNA methylation have been related to risk of cancer and cardiovascular disease. Micronutrients including methyl-donors and retinoids are involved in DNA methylation pathways. We investigated associations of micronutrient status and LINE-1 methylation in a cross-sectional study of school-age children from Bogotá, Colombia. Methylation of LINE-1 repetitive elements was quantified in 568 children 5–12 years of age using pyrosequencing technology. We examined the association of LINE-1 methylation with erythrocyte folate, plasma vitamin B12, vitamin A ferritin (an indicator of iron status) and serum zinc concentrations using multivariable linear regression. We also considered associations of LINE-1 methylation with socio-demographic and anthropometric characteristics. Mean (± SD) LINE-1 methylation was 80.25 (± 0.65) percentage of 5-mC (%5-mC). LINE-1 methylation was inversely related to plasma vitamin A. After adjustment for potential confounders, children with retinol levels higher than or equal to 1.05 µmol/L showed 0.19% 5-mC lower LINE-1 methylation than children with retinol levels lower than 0.70 µmol/L. LINE-1 methylation was also inversely associated with C-reactive protein, a marker of chronic inflammation, and female sex. We identified positive associations of maternal body mass index and socioeconomic status with LINE-1 methylation. These associations were not significantly different by sex. Whether modification of these exposures during school-age years leads to changes in global DNA methylation warrants further investigation.  相似文献   

10.
《Epigenetics》2013,8(11):1532-1539
DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75th and 25th of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects’ high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted.  相似文献   

11.
《Epigenetics》2013,8(2):243-248
Breast cancer clusters within families but genetic factors identified to date explain only a portion of this clustering. Lower global DNA methylation in white blood cells (WBC) has been associated with increased breast cancer risk. We examined whether WBC DNA methylation varies by extent of breast cancer family history in unaffected women from high-risk breast cancer families. We evaluated DNA methylation levels in LINE-1, Alu and Sat2 in 333 cancer-free female family members of the New York site of the Breast Cancer Family Registry, the minority of which were known BRCA1 or BRCA2 mutation carriers. We used generalized estimated equation models to test for differences in DNA methylation levels by extent of their breast cancer family history after adjusting for age. All unaffected women had at least one sister affected with breast cancer. LINE-1 and Sat2 DNA methylation levels were lower in individuals with 3 or more (3+) first-degree relatives with breast cancer relative to women with only one first-degree relative. For LINE-1, Alu, and Sat2, having 3+ affected first-degree relatives was associated with a decrease of 23.4% (95%CI = ?46.8%, 0.1%), 17.9% (95%CI = ?39.5%, 3.7%) and 11.4% (95% CI = ?20.3%, ?2.5%), respectively, relative to individuals with only one affected first-degree relative, but the results were only statistically significant for Sat2. Individuals having an affected mother had 17.9% lower LINE-1 DNA methylation levels (95% CI = ?28.8%, ?7.1%) when compared with those not having an affected mother. No associations were observed for Alu or Sat2 by maternal breast cancer status. If replicated, these results indicate that lower global WBC DNA methylation levels in families with extensive cancer histories may be one explanation for the clustering of cancers in these families. Family clustering of disease may reflect epigenetic as well as genetic and shared environmental factors.  相似文献   

12.
《Epigenetics》2013,8(6):394-398
Folic acid supplementation during pregnancy has known beneficial effects. It reduces risk of neural tube defects and low birth weight. Folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. However, most data on the effects of folate on the epigenome is derived from animal or in vitro models. We examined the relationship between cord blood methylation and maternal folic acid intake, cord blood folate and homocysteine using data from 24 pregnant women. Genome-wide methylation was determined by the level of methylation of LINE-1 repeats using Pyrosequencing. We show that cord plasma homocysteine (p = 0.001, r = -0.688), but not serum folate or maternal folic acid intake, is inverse correlated with LINE-1 methylation. This remained significant after correction for potential confounders (p = 0.004). These data indicate that levels of folate-associated intermediates in cord blood during late pregnancy have significant consequences for the fetal epigenome.  相似文献   

13.
《Epigenetics》2013,8(7):929-933
Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6–15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources.  相似文献   

14.
Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.  相似文献   

15.
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution.  相似文献   

16.
Background/Objective: Recently, several studies have reported that DNA methylation changes in tissue are reflected in blood, sparking interest in the potential use of global DNA methylation as a biomarker for gestational diabetes mellitus (GDM). This study investigated whether global DNA methylation is associated with GDM in South African women.

Methods: Global DNA methylation was quantified in peripheral blood cells of women with (n?=?63) or without (n?=?138) GDM using the MDQ1 Imprint® DNA Quantification Kit.

Results: Global DNA methylation levels were not different between women with or without GDM and were not associated with fasting glucose or insulin concentrations. However, levels were 18% (p?=?0.012) higher in obese compared to non-obese pregnant women and inversely correlated with serum adiponectin concentrations (p?=?0.005).

Discussion: Contrary to our hypothesis, global DNA methylation was not associated with GDM in our population. These preliminary findings suggest that despite being a robust marker of overall genomic methylation that offers opportunities as a biomarker, global DNA methylation profiling may not offer the resolution required to detect methylation differences in the peripheral blood cells of women with GDM. Moreover, global DNA methylation in peripheral blood cells may not reflect changes in placental tissue. Further studies in a larger sample are required to explore the candidacy of a more targeted approach using gene-specific methylation as a biomarker for GDM in our population.  相似文献   


17.
《Epigenetics》2013,8(10):1322-1328
In the last years, epigenetic processes have emerged as a promising area of complex diseases research. DNA methylation measured in Long Interspersed Nucleotide Element 1 (LINE-1) sequences has been considered a surrogate marker for global genome methylation. New findings have suggested the potential involvement of epigenetic mechanisms in Type 2 diabetes (T2DM) as a crucial interface between the effects of genetic predisposition and environmental influences. Our study evaluated whether global DNA methylation predicted increased risk from T2DM or other carbohydrate metabolism disorders in a cohort study. We used a prospective cohort intervention study and a control group. We collected phenotypic, anthropometric, biochemical, and nutritional information from all subjects. Global LINE-1 DNA methylation was quantified by pyrosequencing technology. Subjects that did not improve their carbohydrate metabolism status showed lower levels of global LINE-1 DNA methylation (63.9 ± 1.7 vs. 64.7 ± 2.4) and they practiced less intense physical activity (5.8% vs. 21.5%). Logistic regression analyses showed a significant association between LINE-1 DNA methylation and metabolic status after adjustment for sex, age, BMI, and physical activity. Our study showed that lower LINE-1 DNA methylation levels were associated with a higher risk metabolic status worsening, independent of other classic risk factors. This finding highlights the potential role for epigenetic biomarkers as predictors of T2DM risk or other related metabolic disorders.  相似文献   

18.
Endocrine disrupting chemicals (EDCs) pose a public health risk through disruption of normal biological processes. Identifying toxicoepigenetic mechanisms of developmental exposure-induced effects for EDCs, such as phthalates or bisphenol A (BPA), is essential. Here, we investigate whether maternal exposure to EDCs is predictive of infant DNA methylation at candidate gene regions. In the Michigan Mother-Infant Pairs (MMIP) cohort, DNA was extracted from cord blood leukocytes for methylation analysis by pyrosequencing (n = 116) and methylation changes related to first trimester levels of 9 phthalate metabolites and BPA. Growth and metabolism-related genes selected for methylation analysis included imprinted (IGF2, H19) and non-imprinted (PPARA, ESR1) genes along with LINE-1 repetitive elements. Findings revealed decreases in methylation of LINE-1, IGF2, and PPARA with increasing phthalate concentrations. For example, a log unit increase in ΣDEHP corresponded to a 1.03 [95% confidence interval (CI): ?1.83, ?0.22] percentage point decrease in PPARA methylation. Changes in DNA methylation were also inversely correlated with PPARA gene expression determined by RT-qPCR (r = ?0.34, P = 0.02), thereby providing evidence in support of functional relevance. A sex-stratified analysis of EDCs and DNA methylation showed that some relationships were female-specific. For example, urinary BPA exposure was associated with a 1.35 (95%CI: ?2.69, ?0.01) percentage point decrease in IGF2 methylation and a 1.22 (95%CI: ?2.27, ?0.16) percentage point decrease in PPARA methylation in females only. These findings add to a body of evidence suggesting epigenetically labile regions may provide a conduit linking early exposures with disease risk later in life and that toxicoepigenetic susceptibility may be sex specific.  相似文献   

19.
Changes in the methylation levels of DNA from white blood cells (WBCs) are putatively associated with an elevated risk for several cancers. The aim of this study was to investigate the association between colorectal cancer (CRC) and the methylation status of three DNA repetitive elements in DNA from peripheral blood. WBC DNA from 539 CRC cases diagnosed before 60 years of age and 242 sex and age frequency-matched healthy controls from the Australasian Colorectal Cancer Family Registry were assessed for methylation across DNA repetitive elements Alu, LINE-1 and Sat2 using MethyLight. The percentage of methylated reference (PMR) of cases and controls was calculated for each marker. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression adjusted for potential confounders. CRC cases demonstrated a significantly higher median PMR for LINE-1 (p < 0.001), Sat2 (p < 0.001) and Alu repeats (p = 0.02) when compared with controls. For each of the DNA repetitive elements, individuals with PMR values in the highest quartile were significantly more likely to have CRC compared with those in the lowest quartile (LINE-1 OR = 2.34, 95%CI = 1.48–3.70; p < 0.001, Alu OR = 1.83, 95%CI = 1.17–2.86; p = 0.01, Sat2 OR = 1.72, 95%CI = 1.10–2.71; p = 0.02). When comparing the OR for the PMR of each marker across subgroups of CRC, only the Alu marker showed a significant difference in the 5-fluoruracil treated and nodal involvement subgroups (both p = 0.002). This association between increasing methylation levels of three DNA repetitive elements in WBC DNA and early-onset CRC is novel and may represent a potential epigenetic biomarker for early CRC detection.  相似文献   

20.
Aberrations in global LINE-1 DNA methylation have been related to risk of cancer and cardiovascular disease. Micronutrients including methyl-donors and retinoids are involved in DNA methylation pathways. We investigated associations of micronutrient status and LINE-1 methylation in a cross-sectional study of school-age children from Bogotá, Colombia. Methylation of LINE-1 repetitive elements was quantified in 568 children 5–12 years of age using pyrosequencing technology. We examined the association of LINE-1 methylation with erythrocyte folate, plasma vitamin B12, vitamin A ferritin (an indicator of iron status) and serum zinc concentrations using multivariable linear regression. We also considered associations of LINE-1 methylation with socio-demographic and anthropometric characteristics. Mean (± SD) LINE-1 methylation was 80.25 (± 0.65) percentage of 5-mC (%5-mC). LINE-1 methylation was inversely related to plasma vitamin A. After adjustment for potential confounders, children with retinol levels higher than or equal to 1.05 µmol/L showed 0.19% 5-mC lower LINE-1 methylation than children with retinol levels lower than 0.70 µmol/L. LINE-1 methylation was also inversely associated with C-reactive protein, a marker of chronic inflammation, and female sex. We identified positive associations of maternal body mass index and socioeconomic status with LINE-1 methylation. These associations were not significantly different by sex. Whether modification of these exposures during school-age years leads to changes in global DNA methylation warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号