首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Swales LS 《Tissue & cell》1985,17(6):841-852
The intercellular junctions associated with the modified glial cells of the perineurium have been examined in the ganglia and main abdominal nerves of the blood-sucking bug Rhodnius prolixus, both before and and after feeding, by means of freeze-fracture and tracer studies. It was found that the pleated septate junctions found in the main abdominal nerve have many fewer septa than those found in the ganglion. These junctions appear to provide the flexibility needed for the movement of cells which occurs to accommodate the tremendous increase in body size that takes place after a bloodmeal. On feeding and during the subsequent period of digestion the nerves stretch to double their length, yet the blood-brain barrier is maintained throughout. In the same manner as loosely interconnected tight junctions, septate junctions with fewer septa seem to form a junction which is able to respond readily to the stress of stretching. With feeding and afterwards the septate junctions become disorganized and disassemble, while the gap junctions and tight junctions remain intact. It is envisaged, therefore, that the primary function of the septate junction is adhesive.  相似文献   

2.
3.
4.
The surfaces of miracidia of Schistosoma mansoni were examined ultrastructurally during in vitro transformation to sporocysts. Before transformation, the surface was composed of ciliated epithelial plates (EP) that were set into a reticulum of narrow syncytial ridges (SR). The EP were attached to SR by extensive pleated septate junctions that had 18-24 strands of intramembrane particles (IMP) on the protoplasmic faces and complementary pits on the ectoplasmic faces. These junctions also appeared to separate the EP plasma membrane into apical and basolateral domains with a larger number of IMPs on the latter. Transformation was induced by placing the miracidia in salt containing medium which also halted ciliary beating. In 2-5 hr, the SR expanded until they formed a syncytium covering the parasite surface, while the EP retracted and rounded up. During this time, the EP and SR were held in contact with one another by the septate junctions which became progressively convoluted. Subsequently, the EP detached from the parasite. When transforming miracidia were returned to fresh water, the cilia resumed beating and the EP detached from the parasite surface and exposed the underlying basement membrane. Those EP that remained attached were connected only by septate junctions to the expanded SR. These studies demonstrate that the formation of the syncytium occurs gradually with contact maintained between EP and SR via the septate junctions. Further, the septate junctions are similar to occluding junctions in mammalian epithelia since they segregate the plasma membrane of the EP and they have an adhesive function.  相似文献   

5.
《Fly》2013,7(2):68-74
Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries. We recently reported that TBI in flies, as in humans, increases permeability of the intestinal epithelial barrier resulting in hyperglycemia and a higher risk of death. Furthermore, we demonstrated that genetic variation in flies is also pertinent to the complexity of non-neurological injuries following TBI. The goals of this review are to place our findings in the context of what is known about TBI-induced intestinal permeability from studies of TBI patients and rodent TBI models and to draw attention to how studies of the fly TBI model can provide unique insights that may facilitate diagnosis and treatment of TBI.  相似文献   

6.
Tube formation is a ubiquitous process required to sustain life in multicellular organisms. The tubular organs of adult mammals include the lungs, vasculature, digestive and excretory systems, as well as secretory organs such as the pancreas, salivary, prostate, and mammary glands. Other tissues, including the embryonic heart and neural tube, have requisite stages of tubular organization early in development. To learn the molecular and cellular basis of how epithelial cells are organized into tubular organs of various shapes and sizes, investigators have focused on the Drosophila trachea and salivary gland as model genetic systems for branched and unbranched tubes, respectively. Both organs begin as polarized epithelial placodes, which through coordinated cell shape changes, cell rearrangement, and cell migration form elongated tubes. Here, we discuss what has been discovered regarding the details of cell fate specification and tube formation in the two organs; these discoveries reveal significant conservation in the cellular and molecular events of tubulogenesis.  相似文献   

7.
Summary— The blood-brain barrier (BBB) preventing the passage of proteins is established at day 13 of development in the embryonic chick brain. We describe, as early as this stage, the existence of characteristic tight junctions between endothelial cells that is related to the time of appearance of the basal lamina. At earlier stages (E10, E12), when endothelial cells seem to be held back from the glio-neural neuropile by fibroblast-like cells identified by their appearance and position, the astrocyte plasma membranes already present a rare but characteristic molecular arrangement: the orthogonal arrays of particles (OAs). These OAs become progressively more abundant in astrocytic plasmalemmas contiguous to endothelial cells when these cells have been surrounded by the basal lamina since E15. The contact between astrocytes and basal lamina therefore seems to favor a high density of OAs, as has been shown in vertebrate astrocytes in contact with endothelial cells or leptomeninges. No correlation exists between the onset of the BBB and the time of appearance of OAs.  相似文献   

8.
The precise role of actin and actin-binding proteins in synaptic development is unclear. In Drosophila, overexpression of a dominant-negative NSF2 construct perturbs filamentous actin, which is associated with overgrowth of the NMJ, while co-expression of moesin, which encodes an actin binding protein, suppresses this overgrowth phenotype. These data suggest that Moesin may play a role in synaptic development at the Drosophila NMJ. To further investigate this possibility, we examined the influence of loss-of-function moesin alleles on the NSF2-induced overgrowth phenotype. We found that flies carrying P-element insertions that reduce moesin expression enhanced the NMJ overgrowth phenotype, indicating a role for Moesin in normal NMJ morphology. In addition to the NMJ overgrowth phenotype, expression of dominant-negative NSF2 is known to reduce the frequency of miniature excitatory junctional potentials and the amplitude of excitatory junctional potentials. We found that moesin coexpression did not restore the physiology of the mutant NSF2 phenotype. Together, our results demonstrate a role for moesin in regulating synaptic growth in the Drosophila NMJ and suggest that the effect of dominant-negative NSF2 on NMJ morphology and physiology may have different underlying molecular origins.  相似文献   

9.
Summary The intramembrane structures of the pleated septate junction which occur in the junctional complex of the intestine of the chaetognath Sagitta setosa have been investigated.The pleated septate junction is made up of linear rows of irregularly shaped and sized particles, often fused into short rods, and pits which can be fused into furrows. The distribution of these structures on E and P faces depends upon the preparative methods used. Many of the morphological characteristics are the same as those of the lower invertebrate pleated septate junction type defined by Green (1981a). The physiological significance of this junction is obscure.On the basis of the presence of septate junctions (both of the paired septate junction and pleated septate junction types) which have mainly morphological characteristics of the lower invertebrate pleated septate junction we can add to the hypothesis that chaetognaths are not related to the molluscs and arthropods.  相似文献   

10.
This paper describes the redistribution of septate junctions during an increase in diameter of myoepithelial cells from mesenteries of the sea anemone Metridium senile (L). Each septum was composed of a filament core, 9.5-10.2 nm in diameter, which had a double row of lateral projections from each side to the adjacent cell membrane. Septa were arranged in patches in which neighbouring septa lay parallel, 28-33 nm apart. When anaesthetized mesenteries were stretched, myoepithelial cell layers decreased from a mean of 32 to 8 micron thick; each cell shortened and its apical diameter increased. The integrity of the septate junctions was, however, maintained. The mean perimeter of septate junctions, corresponding to that of the cells, increased from 20 to 31 micron; mean depth decreased from 3.7 to 2.1 micron. There was no significant change in spacing between septa. Patches of septa, free to move in a fluid matrix of junction cell membranes, may form mobile attachment sites between cells, thus allowing those cells to change shape. Number and distribution density of microvilli decreased when cell diameter increased. This implies that the microvilli contribute membrane to the cell surface as its surface area increases. Gastrodermal cells are compared with epidermal cells that do not undergo dramatic changes in diameter.  相似文献   

11.
Drosophila Fasciclin I is the prototype of a family of vertebrate and invertebrate proteins that mediate cell adhesion and signaling. The midline fasciclin gene encodes a second Drosophila member of the Fasciclin I family. Midline Fasciclin largely consists of four 150 amino acid repeats characteristic of the Fasciclin I family of proteins. Immunostaining and biochemical analysis using Midline Fasciclin antibodies indicates that it is a membrane-associated protein, although the sequence does not reveal a transmembrane domain. The gene is expressed in a dynamic fashion during embryogenesis in the blastoderm, central nervous system midline cells, and trachea, suggesting it plays multiple developmental roles. Protein localization studies indicate that Midline Fasciclin is found within cell bodies of midline neurons and glia, and on midline axons. Initial cellular analysis of a midline fasciclin loss-of-function mutation reveals only weak defects in axonogenesis. However, embryos mutant for both midline fasciclin and the abelson nonreceptor tyrosine kinase, show more severe defects in axonogenesis that resemble fasciclin I abelson double mutant phenotypes. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 77–93, 1998  相似文献   

12.
13.
The polyene antibiotic filipin combines with cholesterol in membranes to form complexes that are readily identifiable in the electron microscope. The distribution of filipin-cholesterol (FC) complexes is most easily studied by freeze-fracture. Larval epidermis of Tenebrio molitor (Insecta, Coleoptera) was maintained in vitro for 48 hr, since the electrophysiological properties of the cells are best characterized under these conditions. The cells were fixed in buffered 3.0% glutaraldehyde at RT for 15 min, transferred to fresh fixative containing 1% DMSO and filipin (final concentration; 0.5 mg/ml) for 3 hr RT. Control cells were treated in fixative containing 1% DMSO only. In freeze fracture replicas, FC complexes appear on the plasma membrane as large circular protrusions measuring 26.5 +/- 6.8 nm (x +/- s.d.) n = 50, in diameter and 17.1 +/- 2.8 nm, n = 50, in height and 11.7 +/- 2.6 nm, n = 25, in depth. Protrusions are about two times more frequent on the E face while pits are several times more frequent on the P face. FC complexes are most abundant (greater than 50/mu m2) on the basal membrane surface of the cells but are excluded from regions of hemidesmosomal plaques that anchor the cells to the basal lamina. FC complexes are also abundant on the apical surfaces of the cells where cuticle secretion occurs. In the lateral regions below the junctional belt, FC complexes are less numerous but often appear to increase in frequency in a graded fashion away from the junctional region. The septate junctions are relatively free of FC complexes except in regions where they open to form islands. These islands often contain gap junctions but the FC complexes rarely invade the particle domains of the gap junctions. Single FC complexes were seen in three out of a total of 97 gap junctions. Exposure of the epidermis to 20-hydroxyecdysone for 24 hr in vitro did not induce the appearance of FC complexes within the cell junctions.  相似文献   

14.
Summary The mode of formation of the myoneural and myotendinous junctions was investigated in the thigh muscles of the chick embryo. Myotendinous junctions first appeared on day 11 of incubation, whereas myoneural junctions developed on day 12. Intracellular AChE activity in the muscles increased by the 12th day of incubation, and decreased rapidly after the formation of the myoneural junctions. Light and electron microscopically, AChE activity was demonstrated in the nuclear envelope, sarcoplasmic reticulum, Golgi complex, and in large granules which appeared to be derived from the Golgi complex. Large granules showing an intense AChE activity accumulated in the sarcoplasm at the poles of the muscle fiber before the formation of myotendinous junctions. After the translocation of this intracellular enzyme onto the sarcolemma, most likely the result of an exocytosis of the granules, the myotendinous junctions were formed. The AChE-rich granules present in the middle of myotubes developed into spindle- or comma-shaped cisternae which were located in the sarcoplasm just below the presumptive motor endplates. The present results suggest that the transport of AChE-rich granules to the sarcolemma is the first step in the formation of myoneural and myotendinous junctions.This work was carried out under grant 38848 from the Ministry of Education of Japan  相似文献   

15.
The Drosophila drop-dead (drd) mutant undergoes massive brain degeneration, resulting in sudden death. drd encodes a multi-pass membrane protein possessing nose resistant to fluoxetine (NRF) and putative acyltransferase domains. However, the etiology of brain degeneration that occurs in drd mutant flies is still poorly understood. Herein, we show that drd neurodegeneration may be because of an oxygen deficit in the brain. We found that DRD protein is selectively expressed in cells secreting cuticular and eggshell layers. These layers exhibit blue fluorescence upon UV excitation, which is reduced in drd flies. The drd tracheal air sacs lacking blue fluorescence collapse, which likely contributes to hypoxia. Consistently, genes induced in hypoxia are up-regulated in drd flies. Feeding of anti-reactive oxygen species agents partially rescue the drd from sudden death. We propose that drd flies can provide a non-invasive animal model for hypoxia-induced cell death.  相似文献   

16.
The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila.  相似文献   

17.
Microfilament integrity is needed to maintain the regular arrangement of the spindle microtubules and to guarantee the normal progression of the last syncytial mitoses in Drosophila embryo. To investigate when and how microfilaments participate in this process, we incubated permeabilized embryos with the inhibitor of actin polymerization, cytochalasin B, at different times during the nuclear cycle. Our results suggest that the correct microfilament distribution is only required for the appropriate segregation of nuclei during the 11th, 12th and 13th syncytial mitoses rather than during the 10th mitosis when the spindles are too far apart to interact. When cytochalasin B treatment was performed during the last syncytial mitoses many spindles fuse among them and the regular mitotic progression is perturbed.  相似文献   

18.
Drosophila embryos, because of their high proportion of dividing nuclei, offer many advantages for the study of the mitotic cycle. In the present study we combined immunofluorescence with interference contrast techniques to follow centrosome and spindle behavior in embryos exposed to diazepam during the first stages of development. Exposure to 100 micrograms/ml of diazepam produced polyploid and aneuploid figures resulting from the unusual fusion of one or more adjacent spindles. Diazepam also causes the inhibition of centrosome shifting and induces the formation of monopolar spindles during the metaphase-anaphase transition.  相似文献   

19.
Holley  M. C. 《Hydrobiologia》1991,(1):35-38

Many soft bodied coelenterates are highly deformable or contractile. In the absence of hard skeletal elements, the epithelia are subjected to mechanical forces which cause a wide range of structural changes in the component epithelial cells. What kinds of structural change occur and how are the cells adapted to them? These questions are addressed with reference to cell surface area, cell membranes, cell junctions and epithelial cilia.

  相似文献   

20.
The tracheal apical extracellular matrix (aECM) is vital for expansion of the tracheal lumen and supports the normal structure of the lumen to guarantee air entry and circulation in insects. Although it has been found that some cuticular proteins are involved in the organization of the aECM, unidentified factors still exist. Here, we found that mind the gap (Mtg), a predicted chitin‐binding protein, is required for the normal formation of the apical chitin matrix of airway tubes in the model holometabolous insect Drosophila melanogaster. Similar to chitin, the Mtg protein was linearly arranged in the tracheal dorsal trunk of the tracheae in Drosophila. Decreased mtg expression in the tracheae seriously affected the viability of larvae and caused tracheal chitin spiral defects in some larvae. Analysis of mtg mutant showed that mtg was required for normal development of tracheae in embryos. Irregular taenidial folds of some mtg mutant embryos were found on either lateral view of tracheal dorsal trunk or internal view of transmission electron microscopy analysis. These abnormal tracheae were not fully filled with gas and accompanied by a reduction in tracheal width, which are characteristic phenotypes of tracheal aECM defects. Furthermore, in the hemimetabolous brown planthopper (BPH) Nilaparvata lugens, downregulation of NlCPAP1‐N (a homolog of mtg) also led to the formation of abnormal tracheal chitin spirals and death. These results suggest that mtg and its homolog are involved in the proper organization of the tracheal aECMs in flies and BPH, and that this function may be conserved in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号