首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The p63 gene product regulates epithelial morphogenesis and female germline integrity. In this study, we show that cyclin‐dependent kinase 5 and Abl enzyme substrate 1 (Cables1) interacts with the trans‐activating (TA) p63α isoform to protect it from proteasomal degradation. Using the female germline of Cables1‐null mice as an in vivo model, we demonstrate further that oocytes lacking Cables1 exhibit lower basal levels of TAp63α and reduced accumulation of phosphorylated TAp63α in response to genotoxic stress. This in turn enhances the survival of these cells after ionizing radiation exposure. Thus, Cables1 modulates p63 protein stability and function during genotoxic stress.  相似文献   

5.
Role of the newer p53 family proteins in malignancy   总被引:11,自引:0,他引:11  
The most recently identified members of the p53 family, p63 and p73, share certain structural and functional similarities with p53. Both p63 and p73 can bind to canonical p53-DNA-binding sites, transactivate the promoters of known p53 target genes and induce apoptosis. Despite these similarities there are many important differences. In contrast to p53, p63 and p73 give rise to multiple distinct protein isoforms that have different functional properties. Upstream signaling pathways involved in the activation of p63 and p73 differ from those involved in p53 activation. Only a subset of the DNA damaging agents that induce p53 can induce p73. Cellular and viral oncoproteins can discriminate between p53 and the newer family members. In addition, the levels of p63 and p73 are affected by certain states of cellular differentiation. Finally, it is becoming clear that the newest members of the p53 family are not classical tumor suppressor genes. In contrast to the high prevalence of p53 mutations in human cancers, p63 and p73 mutations are rare. Indeed, levels of p73 increase during malignant progression. In addition, unlike p53-/- mice, mice lacking p63 and p73 do not develop tumors, but instead have significant developmental abnormalities. Mutations in p63 have also been detected in humans with the ectodermal dysplastic syndrome EEC. Further studies are required to determine whether qualitative or quantitative differences in the expression of p63 and p73 isoforms are important in the development of human cancers.  相似文献   

6.
7.
8.
Since the discovery of the TP63 gene in 1998, many studies have demonstrated that ΔNp63, a p63 isoform of the p53 gene family, is involved in multiple functions during skin development and in adult stem/progenitor cell regulation. In contrast, TAp63 studies have been mostly restricted to its apoptotic function and more recently as the guardian of oocyte integrity. TAp63 endogenous expression is barely detectable in embryos and adult (except in oocytes), presumably because of its rapid degradation and the lack of antibodies able to detect weak expression. Nevertheless, two recent independent studies have demonstrated novel functions for TAp63 that could have potential implications to human pathologies. The first discovery is related to the protective role of TAp63 on premature aging. TAp63 controls skin homeostasis by maintaining dermal and epidermal progenitor/stem cell pool and protecting them from senescence, DNA damage and genomic instability. The second study is related to the role of TAp63, expressed by the primitive endoderm, on heart development. This unexpected role for TAp63 has been discovered by manipulation of embryonic stem cells in vitro and confirmed by the severe cardiomyopathy observed in brdm2 p63-null embryonic hearts. Interestingly, in both cases, TAp63 acts in a cell-nonautonomous manner on adjacent cells. Here, we discuss these findings and their potential connection during development.  相似文献   

9.
10.
TAp63α, a homolog of p53 and one of six alternatively spliced p63 isoforms, is a critical mediator of the ionizing radiation (IR)-induced DNA damage response in female germ cells and also tumor suppression in somatic cells. The ΔNp63α isoform, lacking the N-terminal transactivation (TA) domain, is associated with oncogenic potential. The mechanism of p63 functional regulation is not well understood. TAp63α is phosphorylated by ionizing radiation (IR)-induced DNA damage and gene transactivation is likely to be involved. Based on information gleaned from studies on p53, we explored the possibility that TAp63α S/TQ sites may be phosphorylated by IR-induced DNA damage. Our findings show a wortmanin-sensitive kinase phosphorylates TAp63α at C-terminal Ser-Gln and Thr-Gln (S/TQ) sites but not N-terminal S/TQ sites. ΔNp63α, lacking the TA domain, and TAp63γ, lacking C-terminal domains, including S/TQ sites, fail to undergo IR-induced phosphorylation. We propose a model for TA domain-dependent C-terminal phosphorylation drawing from previously described self-inactivating intramolecular interaction between N-terminal TA domain and C-terminal Transactivation Inhibitory Domain (TID) of TAp63α. A specific topology adopted only by TAp63α, but not possible for ΔNp63α or TAp63γ, may lead to TAp63α-specific kinase recruitment, phosphorylation and self-inactivation release. TID-lacking TAp63γ, like p53, is constitutively active and thus may forgo phosphorylation-dependent activation. Thus, p53 is regulated by protein stabilization and TAp63α by protein activation but both appear to involve S/TQ phosphorylation. The difference in phosphorylation potential of TAp63α and ΔNp63α may in part help explain why the two similar isoforms have diametrically opposite tumor suppression and oncogene functions, respectively.  相似文献   

11.
Aging, cancer, and longevity have been linked to intracellular Ca2+ signaling and nociceptive transient receptor potential (TRP) channels. We found that TRP canonical 7 (TRPC7) is a nociceptive mechanoreceptor and that TRPC7 channels specifically mediate the initiation of ultraviolet B (UVB)‐induced skin aging and tumor development due to p53 gene family mutations. Within 30 min after UVB irradiation, TRPC7 mediated UVB‐induced Ca2+ influx and the subsequent production of reactive oxygen species in skin cells. Notably, this function was unique to TRPC7 and was not observed for other TRP channels. In TRPC7 knockout mice, we did not observe the significant UVB‐associated pathology seen in wild‐type mice, including epidermal thickening, abnormal keratinocyte differentiation, and DNA damage response activation. TRPC7 knockout mice also had significantly fewer UVB‐induced cancerous tumors than did wild‐type mice, and UVB‐induced p53 gene family mutations were prevented in TRPC7 knockout mice. These results indicate that TRPC7 activity is pivotal in the initiation of UVB‐induced skin aging and tumorigenesis and that the reduction in TRPC7 activity suppresses the UVB‐induced aging process and tumor development. Our findings support that TRPC7 is a potential tumor initiator gene and that it causes cell aging and genomic instability, followed by a change in the activity of proto‐oncogenes and tumor suppressor genes to promote tumorigenesis.  相似文献   

12.
13.
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh–Wnt/Ctnnb1–Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.  相似文献   

14.
The TP53 tumour-suppressor gene is expressed as several protein isoforms generated by different mechanisms, including use of alternative promoters, splicing sites and translational initiation sites, that are conserved through evolution and within the TP53 homologues, TP63 and TP73. Although first described in the eighties, the importance of p53 isoforms in regulating the suppressive functions of p53 has only become evident in the last 10 years, by analogy with observations that p63 and p73 isoforms appeared indispensable to fully understand the biological functions of TP63 and TP73. This review summarizes recent advances in the field of 'p53 isoforms', including new data on p63 and p73 isoforms. Details of the alternative mechanisms that produce p53 isoforms and cis- and trans-regulators identified are provided. The main focus is on their biological functions (apoptosis, cell cycle, aging and so on) in cellular and animal models, including mouse, zebrafish and Drosophila. Finally, the deregulation of p53 isoform expression in human cancers is reviewed. Based on these latest results, several developments are expected in the future: the identification of drugs modulating p53 isoform expression; the generation of animal models and the evaluation of the use of p53 isoform as biomarkers in human cancers.  相似文献   

15.
Previous work has shown that a dominant-negative retinoic acid receptor alpha (dnRARalpha), expressed under the K14 promoter, causes severe epidermal defects. Similar defects are, however, not seen in RARalphagamma double null mutant mice, which lack the entire complement of RARs expressed in the epidermis. To investigate the mechanism of action of these dominant-negative receptors, dnRARalpha or a DNA binding-deficient variant, dnRARalpha(DBD), were targeted to the basal epidermis. Expression of either receptor type led to similar epidermal phenotypes suggesting that both RAR mutants acted through a common mechanism. The epidermal phenotype was reminiscent of defects seen in p63(-/-) mice. Consistent with this, reduced p63 expression was observed in transgenic offspring expressing either RAR mutant, suggesting that down-regulation of p63 might underlie the effects of these receptors on epidermal development. By contrast, expression of p63 in the epidermis of RARalphagamma(-/-) offspring was unaffected, indicating that RARs were not essential for p63 expression. These findings suggest that dnRARs may impact on epidermal development through one or more non-canonical pathways, which are independent of receptor-DNA interaction.  相似文献   

16.
17.
The homolog of p53 gene, p63, encodes multiple p63 protein isoforms. TAp63 proteins contain an N-terminal transactivation domain similar to that of p53 and function as tumor suppressors; whereas ΔNp63 isoforms, which lack the intact N-terminal transactivation domain, are associated with human tumorigenesis. Accumulating evidence demonstrating the important roles of p63 in development and cancer development, the regulation of p63 proteins, however, is not fully understood. In this study, we show that peptidyl-prolyl isomerase Pin1 directly binds to and stabilizes TAp63α and ΔNp63α via inhibiting the proteasomal degradation mediated by E3 ligase WWP1. We further show that Pin1 specifically interacts with T538P which is adjacent to the P550PxY543 motif, and disrupts p63α–WWP1 interaction. In addition, while Pin1 enhances TAp63α-mediated apoptosis, it promotes ΔNp63α-induced cell proliferation. Furthermore, knockdown of Pin1 in FaDu cells inhibits tumor formation in nude mice, which is rescued by simultaneous knockdown of WWP1 or ectopic expression of ΔNp63α. Moreover, overexpression of Pin1 correlates with increased expression of ΔNp63α in human oral squamous cell carcinoma samples. Together, these results suggest that Pin1-mediated modulation of ΔNp63α may have a causative role in tumorigenesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号