首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archak S  Nagaraju J 《Fly》2007,1(5):279-281
Microsatellites show tremendous variation between genomes in terms of their occurrence and composition. Availability of whole genome sequences allows us to study microsatellite characteristics of fully sequenced insect genomes to understand the evolution and biological significance of microsatellites. InSatDb is an insect microsatellite database that provides an interactive interface to query information on microsatellites annotated with size (in base pairs and repeat units), genomic location (exon, intron, up-stream or transposon), nature (perfect or imperfect), and sequence composition (repeat motif and GC%). Here we present a snapshot of the distribution and composition of microsatellites in introns and exons of insect genomes. The data present interesting observations regarding the microsatellite life-cycle and genome flux.  相似文献   

2.
Studies on microsatellite distribution and divergence in related genomes contribute towards understanding of genome evolution in eukaryotes. Despite the availability of whole genome sequences of four rice genomes, occurrence and significance of microsatellites in the rice genome has remained a relatively unexplored area of research. We have aligned genomes of two rice subspecies i.e. indica and japonica to understand the trends of microsatellite conservation and divergence in the rice genome. Nearly 62% of the indica microsatellites were also found in the japonica genome. Occurrence of microsatellites showed a negative association with that of retrotransposons. Microsatellites repeat unit length and sequence showed direct influence on the microsatellite locus length. Further, microsatellite allele length was also influenced by the sequence characteristics of the neighbouring regions. CCG repeats were most conserved microsatellite sequences across the different syntenic regions in the two rice genomes and often showed association with CpG islands. Our study suggested that microsatellite distribution is not only governed by a balance between replication slippage and point mutations as proposed earlier, but also by the microsatellite motif sequence and characteristics of microsatellite neighbouring regions in the genome. Thus, this study is likely to prove an important reference for understanding the process of microsatellite evolution and dynamics in the two rice subspecies.  相似文献   

3.
K D Reddy  E G Abraham  J Nagaraju 《Génome》1999,42(6):1057-1065
We have isolated and characterized microsatellites (simple sequence repeat (SSR) loci) from the silkworm genome. The screening of a partial genomic library by the conventional hybridization method led to the isolation of 28 microsatellites harbouring clones. The abundance of (CA)n repeats in the silkworm genome was akin to those reported in the other organisms such as honey bee, pig, and human, but the (CT)n repeat motif is less common compared to bumble bee and honey bee genomes. Detailed analysis of 13 diverse silkworm strains with a representative of 15 microsatellite loci revealed a number of alleles ranging from 3 to 17 with heterozygosity values of 0.66-0.90. Along with strain-specific microsatellite markers, diapause and non-diapause strain-specific alleles were also identified. The repeat length did not show any relationship with the degree of polymorphism in the present study. The co-dominant inheritance of microsatellite markers was demonstrated in F1 offspring. A list of primer sequences that tag each locus is provided. The availability of microsatellite markers can be expected to enhance the power and resolution of genome analysis in silkworm.  相似文献   

4.
Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes. Supplementary Data pertaining to this article is available on the Journal of Biosciences Website at  相似文献   

5.
We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15–46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes.  相似文献   

6.
MRD is a database system to access the microsatellite repeats information of genomes such as archea, eubacteria, and other eukaryotic genomes whose sequence information is available in public domains. MRD stores information about simple tandemly repeated k-mer sequences where k= 1 to 6, i.e. monomer to hexamer. The web interface allows the users to search for the repeat of their interest and to know about the association of the repeat with genes and genomic regions in the specific organism. The data contains the abundance and distribution of microsatellites in the coding and non-coding regions of the genome. The exact location of repeats with respect to genomic regions of interest (such as UTR, exon, intron or intergenic regions) whichever is applicable to organism is highlighted. MRD is available on the World Wide Web at and/or . The database is designed as an open-ended system to accommodate the microsatellite repeats information of other genomes whose complete sequences will be available in future through public domain.  相似文献   

7.
Simple sequence repeats (SSRs), or microsatellites, are special DNA/RNA sequences with repeated unit of 1–6 bp. The genomes of Herpesvirales have many repeating structures, which is an excellent system to study the evolution and roles of microsatellites and compound microsatellites in viruses. Therefore, 56 genomes of Herpesvirales were selected and the occurrence, composition and complexity of different repeats were investigated in the genomes. A total of 63,939 microsatellites and 5825 compound microsatellites were extracted from 56 genomes. It found that GC content has a significant strong correlation with both the counts of microsatellites (CM) and the counts of compound microsatellites (CCM). However, genome size has a moderate correlation only with CM and almost no correlation with CCM. The compound microsatellites occurring in genic regions are obviously more than that in intergenic regions. In general, the number of compound microsatellite decreases with the increase of complexity (C) (the count of individual microsatellites being part of a compound microsatellite) and the complexity hardly exceeds C = 4. The vast majority of compound microsatellites exist in intergenic regions, when C ≥ 10. The distributions of SSRs tend to be organism-specific rather than host-specific in herpesvirus genomes. The diversity of microsatellites and compound microsatellites may be helpful for a better understanding of the viral genetic diversity, genotyping, and evolutionary biology in herpesviruses genomes.  相似文献   

8.
We calculated occurrences of all dinucleotide and trinucleotide microsatellites in the human, mouse, and yeast genomes. The microsatellites were considered separately not only according to the repeated dinucleotide or trinucleotide and the microsatellite length but also according to the starting/terminal nucleotide. The analysis showed that dramatically non-equal amounts occurred in the human genome of microsatellites that differed only by the terminal nucleotides. For example, the 23-mer (TTG)(7)TT occurs 635 times in the human genome whereas (GTT)(7)GT is present only three times in the human genome though the two 23-mers share a 22 nucleotide sequence. The dramatically non-equal occurrences of microsatellites differing only by the terminal nucleotides are observed for most dinucleotide and trinucleotide microsatellites and in all analyzed genomes. We suppose that the strikingly non-equal genomic occurrences of these closely related microsatellites originate from conformational properties of DNA.  相似文献   

9.
Simple sequence repeats (SSRs) or microsatellites constitute a countable portion of genomes. However, the significance of SSRs in organelle genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the current study we surveyed the patterns of SSRs in mitochondrial genomes of different taxa of plants. A total of 16 mitochondrial genomes, from algae to angiosperms, have been considered to analyze the pattern of simple sequence repeats present in them. Based on study, the mononucleotide repeats of A/T were found to be more prevalent in mitochondrial genomes over other repeat types. The dinucleotides repeats, TA/AT, were the second most numerous, whereas tri-, tetra-, and pentanucleotide repeats were in less number and present in intronic or intergenic portions only. Mononucleotide repeats prevailed in protein-coding exonic portions of all organisms. These results indicates that microsatellite pattern in mitochondrial genomes is different from nuclear genomes and also focuses on organization and diversity at SSR locuses in mitochondrial genomes. This is the novel report of microsatellite polymorphism in plant mitochondrion on whole genome level.  相似文献   

10.
桉树EST序列中微卫星含量及相关特征   总被引:6,自引:0,他引:6  
通过对桉树属(Eucalyptus)的10 000条EST序列进行分析, 在其中的1 499条序列上共发现1 775个微卫星重复序列。含有微卫星的EST序列约占序列总数的15%。此外, 还发现桉树EST序列所含微卫星长度的变异速率与重复单元长度呈负相关; 微卫星的丰度与重复单元长度也呈负相关(三碱基重复微卫星除外)。在桉树EST序列中, 重复单元长度为三碱基的微卫星最为丰富。三碱基重复单元微卫星的过度富集可能是由于遗传密码选择所致。在微卫星的丰度及长度变异方面, 桉树EST序列与杨树(Populus trichocarpa)基因组注释的转录序列随重复单元长度的变化呈现出相同的规律, 但桉树EST序列中微卫星频率及三碱基重复微卫星的含量显著偏低, 推测含微卫星的基因表达丰度极有可能低于不含微卫星的基因。通过对发现的所有微卫星位点进行引物设计, 并对设计的引物进行PCR检测, 结果表明所设计的引物具有极高的扩增成功率。  相似文献   

11.
通过对桉树属(Eucalyptus)的10000条EST序列进行分析,在其中的1499条序列上共发现1775个微卫星重复序列。含有微卫星的EST序列约占序列总数的15%。此外,还发现桉树EST序列所含微卫星长度的变异速率与重复单元长度呈负相关;微卫星的丰度与重复单元长度也呈负相关(三碱基重复微卫星除外)。在桉树EST序列中,重复单元长度为三碱基的微卫星最为丰富。三碱基重复单元微卫星的过度富集可能是由于遗传密码选择所致。在微卫星的丰度及长度变异方面,桉树EST序列与杨树(Populus trichocarpa)基因组注释的转录序列随重复单元长度的变化呈现出相同的规律,但桉树EST序列中微卫星频率及三碱基重复微卫星的含量显著偏低,推测含微卫星的基因表达丰度极有可能低于不含微卫星的基因。通过对发现的所有微卫星位点进行引物设计,并对设计的引物进行PCR检测,结果表明所设计的引物具有极高的扩增成功率。  相似文献   

12.
Simultaneous identification and comparison of perfect and imperfect microsatellites within a genome is a valuable tool both to overcome the lack of a consensus definition of SSRs and to assess repeat history. Detailed analysis of the overall distribution of perfect and imperfect microsatellites in closely related bacterial taxa is expected to give new insight into the evolution of prokaryotic genomes. We have performed a genome-wide analysis of microsatellite distribution in four Escherichia coli and seven Chlamydial strains. Chlamydial strains generally have a higher density of SSRs and show greater intra-group differences of SSR distribution patterns than E. coli genomes. In most investigated genomes the distribution of the total lengths of matching perfect and imperfect trinucleotide repeats are highly similar, with the notable exception of C. muridarum. Closely related strains show more similar repeat distribution patterns than strains separated by a longer divergence time. The discrepancy between the preferred classes of perfect and imperfect repeats in C. muridarum implies accelerated evolution of SSRs in this particular strain. Our results suggest that microsatellites, although considerably less abundant than in eukaryotic genomes, may nevertheless play an important role in the evolution of prokaryotic genomes and several gene families.  相似文献   

13.
Abstract We analyze published data from 592 AC microsatellite loci from 98 species in five vertebrate classes including fish, reptiles, amphibians, birds, and mammals. We use these data to address nine major questions about microsatellite evolution. First, we find that larger genomes do not have more microsatellite loci and therefore reject the hypothesis that microsatellites function primarily to package DNA into chromosomes. Second, we confirm that microsatellite loci are relatively rare in avian genomes, but reject the hypothesis that this is due to physical constraints imposed by flight. Third, we find that microsatellite variation differs among species within classes, possibly relating to population dynamics. Fourth, we reject the hypothesis that microsatellite structure (length, number of alleles, allele dispersion, range in allele sizes) differs between poikilotherms and homeotherms. The difference is found only in fish, which have longer microsatellites and more alleles than the other classes. Fifth, we find that the range in microsatellite allele size at a locus is largely due to the number of alleles and secondarily to allele dispersion. Sixth, length is a major factor influencing mutation rate. Seventh, there is a directional mutation toward an increase in microsatellite length. Eighth, at the species level, microsatellite and allozyme heterozygosity covary and therefore inferences based on large-scale studies of allozyme variation may also reflect microsatellite genetic diversity. Finally, published microsatellite loci (isolated using conventional hybridization methods) provide a biased estimate of the actual mean repeat length of microsatellites in the genome.  相似文献   

14.
MICAS is a web server for extracting microsatellite information from completely sequenced prokaryote and viral genomes, or user-submitted sequences. This server provides an integrated platform for MICdb (database of prokaryote and viral microsatellites), W-SSRF (simple sequence repeat finding program) and Autoprimer (primer design software). MICAS, through dynamic HTML page generation, helps in the systematic extraction of microsatellite information from selected genomes hosted on MICdb or from user-submitted sequences. Further, it assists in the design of primers with the help of Autoprimer, for sequences containing selected microsatellite tracts.  相似文献   

15.
Microsatellite polymorphisms are invaluable for mapping vertebrate genomes. In order to estimate the occurrence of microsatellites in the rabbit genome and to assess their feasibility as markers in rabbit genetics, a survey on the presence of all types of mononucleotide, dinucleotide, trinucleotide and tetranucleotide repeats, with a length of about 20 bp or more, was conducted by searching the published rabbit DNA sequences in the EMBL nucleotide database (version 32). A total of 181 rabbit microsatellites could be extracted from the present database. The estimated frequency of microsatellites in the rabbit genome was one microsatellite for every 2–3 kb of DNA. Dinucleotide repeats constituted the prevailing class of microsatellites, followed by trinucleotide, mononucleotide and tetranucleotide repeats, respectively. The average length of the microsatellites, as found in the database, was 26, 23, 23 and 22 bp for mono-, di-, tri- and tetranucleotide repeats, respectively. The most common repeat motif was AG, followed by A, AC, AGG and CCG. This group comprised about 70% of all extracted rabbit microsatellites. About 61% of the microsatellites were found in non-coding regions of genes, whereas 15% resided in (protein) coding regions. A significant fraction of rabbit microsatellites (about 22%) was found within interspersed repetitive DNA sequences.  相似文献   

16.
Vascular plant species have shown a low level of microsatellite conservation compared to many animal species. Finding trans-specific microsatellites for plants may be improved by using a priori knowledge of genome organization. Fifteen triplet-repeat microsatellites from hard pine (Pinus taeda L.) were tested for trans-specific amplification across seven hard pines (P. palustris Mill., P. echinata Mill., P. radiata D. Don., P. patula Schiede et Deppe, P. halepensis Mill., P. kesiya Royle), a soft pine (P. strobus L.), and Picea rubens Sargent. Seven of 15 microsatellites had trans-specific amplification in both hard and soft pine subgenera. Two P. taeda microsatellites had conserved flanking regions and repeat motifs in all seven hard pines, soft pine P. strobus, and P. rubens. Perfect triplet-repeat P. taeda microsatellites appear to be better candidates for trans-specific polymorphism than compound microsatellites. Not all perfect triplet-repeat microsatellites were conserved, but all conserved microsatellites had perfect repeat motifs. Persistent microsatellites PtTX2123 and PtTX3020 had highly conserved flanking regions and a conserved repeat motif composition with variable repeat unit numbers. Using trinucleotide microsatellites improved trans-specific microsatellite recovery among hard and soft pine species.  相似文献   

17.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 × G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.  相似文献   

18.
邵伟伟  乔芬  蔡玮  林植华  韦力 《兽类学报》2023,43(2):182-192
脊椎动物基因组含有丰富的微卫星信息。本研究对翼手目动物中的大蹄蝠全基因组及其基因的微卫星分布特征进行分析,并对含有微卫星编码序列的基因进行注释分析。结果表明,大蹄蝠全基因组大小为2.24 Gb,共含有497 883个微卫星,其中,数量和比例最多的是单碱基和二碱基重复类型,分别有173 953个(34.94%)和222 591个(44.71%),相对丰度分别为77.78 loci/Mb和99.52 loci/Mb。微卫星数量从单碱基重复到六碱基重复单元最多的类型分别为(A)n、(AC)n、(TAT)n、(TTTA)n、(AACAA)n和(TATCTA)n,比例分别为95.14%、55.25%、38.41%、22.17%、48.68%和20.30%。不同基因区和基因间区的数量及丰度不同,其中基因间区的微卫星数量及其丰度最大,分别为322 666个和2 541.57 loci/Mb,编码区的微卫星数量及其丰度最小,分别为1 461个和461.98 loci/Mb。基因间区和全基因组的微卫星的分布特征相似。编码区最多的微卫星类型为三碱基重复单元,外显子最多的微卫星类型为单碱基、二碱基和三碱基重...  相似文献   

19.
Microsatellites or Simple Sequence Repeats (SSRs) are tandem iterations of one to six base pairs, non-randomly distributed throughout prokaryotic and eukaryotic genomes. Limited knowledge is available about distribution of microsatellites in single stranded DNA (ssDNA) viruses, particularly vertebrate infecting viruses. We studied microsatellite distribution in 118 ssDNA virus genomes belonging to three families of vertebrate infecting viruses namely Circoviridae, Parvoviridae, and Anelloviridae, and found that microsatellites constitute an important component of these virus genomes. Mononucleotide repeats were predominant followed by dinucleotide and trinucleotide repeats. A strong positive relationship existed between number of mononucleotide repeats and genome size among all the three virus families. A similar relationship existed for the occurrence of DTTPH (di-, tri-, tetra-, penta- and hexa-nucleotide) repeats in the families Anelloviridae and Parvoviridae only. Relative abundance and relative density of mononucleotide repeats showed a strong positive relationship with genome size in Circoviridae and Parvoviridae. However, in the case of DTTPH repeats, these features showed a strong relationship with genome size in Circoviridae only. On the other hand, relative microsatellite abundance and relative density of mononucleotide repeats were negatively correlated with GC content (%) in Parvoviridae genomes. On the basis of available annotations, our analysis revealed maximum occurrence of mononucleotide as well as DTTPH repeats in the coding regions of these virus genomes. Interestingly, after normalizing the length of the coding and non-coding regions of each virus genome, we found relative density of microsatellites much higher in the non-coding regions. We understand that the present study will help in the better characterization of the stability, genome organization and evolution of these virus classes and may provide useful leads to decipher the etiopathogenesis of these viruses.  相似文献   

20.
A cosmid library made from brown-headed cowbird (Molothrus ater) DNA was examined for representation of 17 distinct microsatellite motifs including all possible mono-, di-, and trinucleotide microsatellites, and the tetranucleotide repeat (GATA)n. The overall density of microsatellites within cowbird DNA was found to be one repeat per 89 kb and the frequency of the most abundant motif, (AGC)n, was once every 382 kb. The abundance of microsatellites within the cowbird genome is estimated to be reduced approximately 15-fold compared to humans. The reduced frequency of microsatellites seen in this study is consistent with previous observations indicating reduced numbers of microsatellites and other interspersed repeats in avian DNA. In addition to providing new information concerning the abundance of microsatellites within an avian genome, these results provide useful insights for selecting cloning strategies that might be used in the development of locus-specific microsatellite markers for avian studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号