共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Reversible protein phosphorylation is involved in the regulation of most, if not all, major cellular processes via dynamic signal transduction pathways. During the last decade quantitative phosphoproteomics have evolved from a highly specialized area to a powerful and versatile platform for analyzing protein phosphorylation at a system-wide scale and has become the intuitive strategy for comprehensive characterization of signaling networks. Contemporary phosphoproteomics use highly optimized procedures for sample preparation, mass spectrometry and data analysis algorithms to identify and quantify thousands of phosphorylations, thus providing extensive overviews of the cellular signaling networks. As a result of these developments quantitative phosphoproteomics have been applied to study processes as diverse as immunology, stem cell biology and DNA damage. Here we review the developments in phosphoproteomics technology that have facilitated the application of phosphoproteomics to signaling networks and introduce examples of recent system-wide applications of quantitative phosphoproteomics. Despite the great advances in phosphoproteomics technology there are still several outstanding issues and we provide here our outlook on the current limitations and challenges in the field. 相似文献
3.
Sibling species groups are suitable models for the understanding of inter‐ and intraspecific processes in taxonomy and biogeography. We analysed 262 individuals from the Alps of the Coenonympha arcania/gardetta species complex by allozyme electrophoresis. These taxa showed high variance amongst populations (FST: 0.391) and strong intertaxon genetic differentiation (FCT: 0.376). Although morphologically similar, Coenonympha gardetta and Coenonympha arcania clearly differ in their genetic characteristics; the morphologically intermediate taxa Coenonympha darwiniana darwiniana and Coenonympha darwiniana macromma are genetically well distinguished from each other and the two other taxa. Coenonympha arcania and C. d. macromma most probably share a common ancestor and evolved by cladogenesis, whereas the taxonomic situation of C. d. darwiniana is still unresolved: This taxon might be the result of hybridization between C. arcania and C. gardetta or it might have a common ancestor together with C. gardetta. We suggest species rank for all four taxa. The distribution of genetic diversity of these populations and the differentiation amongst populations suggest rather different biogeographical scenarios: C. arcania most probably is of Mediterranean origin with postglacial range expansion northwards; C. gardetta survived the last ice age in peripheral refugia of the Alps and has spread all over this high mountain system in the postglacial; C. darwiniana and C. macromma survived the Würm in geographic proximity to their actual distribution areas and only have performed moderate uphill translocations during postglacial warming. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 890–904. 相似文献
4.
5.
《Expert review of proteomics》2013,10(1):81-94
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes. 相似文献
6.
CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation. 相似文献
7.
《Cell Adhesion & Migration》2013,7(1):52-55
During the formation of neural circuitry, axons are known to be guided to their specific targets by a relatively small arsenal of guidance signals. However, the molecular integration of this guidance information inside the axonal growth cone (GC) is still baffling. Focal adhesion kinase (FAK) is a cytosolic kinase which interacts with a complex molecular network via multiple phosphorylation sites. Paradoxically, FAK activation is required by both attractive and repulsive cues to control respectively axon outgrowth and disassembly of adhesive structures together with cytoskeletal dynamics. It was suggested that FAK might work as a versatile molecular integrator switching to different functions depending on its activation state. Two studies published recently by our group and Woo et al. shed light on this issue: for the first time, these works report a detailed molecular analysis of FAK activation and phosphorylation pattern in primary neuronal cultures in response to the repulsive cues Semaphorin3A and ephrinA1 respectively. Here we comment on the major novelties provided by these papers in the context of previous literature and we speculate on the future avenues of investigation opened by these works. 相似文献
8.
RÉGIS FICHOT TÊTÈ S. BARIGAH SYLVAIN CHAMAILLARD DIDER LE THIEC FRANÇOISE LAURANS HERVÉ COCHARD FRANCK BRIGNOLAS 《Plant, cell & environment》2010,33(9):1553-1568
We examined the relationships between xylem resistance to cavitation and 16 structural and functional traits across eight unrelated Populus deltoides×Populus nigra genotypes grown under two contrasting water regimes. The xylem water potential inducing 50% loss of hydraulic conductance (Ψ50) varied from ?1.60 to ?2.40 MPa. Drought‐acclimated trees displayed a safer xylem, although the extent of the response was largely genotype dependant, with Ψ50 being decreased by as far as 0.60 MPa. At the tissue level, there was no clear relationship between xylem safety and either xylem water transport efficiency or xylem biomechanics; the only structural trait to be strongly associated with Ψ50 was the double vessel wall thickness, genotypes exhibiting a thicker double wall being more resistant. At the leaf level, increased cavitation resistance was associated with decreased stomatal conductance, while no relationship could be identified with traits associated with carbon uptake or bulk leaf carbon isotope discrimination, a surrogate of intrinsic water‐use efficiency. At the whole‐plant level, increased safety was associated with higher shoot growth potential under well‐irrigated regime only. We conclude that common trade‐offs between xylem resistance to cavitation and other physiological traits that are observed across species may not necessarily hold true at narrower scales. 相似文献
9.
RANGAPRASAD SARANGARAJAN YANG ZHAO GEORGE BABCOCK JAMES CORNELIUS M. LYNN LAMOREUX RAYMOND E. BOISSY 《Pigment cell & melanoma research》2000,13(5):337-344
Tyrosinase related protein‐1 (TRP‐1) is a melanocyte‐specific gene product involved in eumelanin synthesis. Mutation in the Tyrp1 gene is associated with brown pelage in mouse and oculocutaneous albinism Type 3 in humans (OCA3). It has been demonstrated that TRP‐1 expresses DHICA oxidase activity in the murine system. However, its actual function in the human system is still unclear. The study was designed to determine the effects of mutation at two Typr1 alleles, namely the Tyrp1b (brown) and Tyrp1b‐cj (cordovan) compared with wild type Tyrp1B (black) on melanocyte function and melanin biosynthesis. The most significant finding was that both of the Tyrp1 mutations (i.e. brown expressing a point mutation and cordovan expressing decreased amount of TRP‐1 protein) resulted in attenuation of cell proliferation rates. Neither necrosis nor apoptosis was responsible for the observed decrease in cell proliferation rates of the brown and cordovan melanocytes. Ultrastructural evaluation by electron microscopic analysis revealed that both mutations in Tyrp1 affected melanosome maturation without affecting its structure. These observations demonstrate that mutation in Tyrp1 compromised tyrosinase activity within the organelle. DOPA histochemistry revealed differences in melanosomal stages between black and brown melanocytes but not between black and cordovan melanocytes. There were no significant differences in tyrosine hydroxylase activities of tyrosinase and TRP‐1 in wild type black, brown and cordovan melanocyte cell lysates. We conclude that mutations in Tyrp1 compromise cell proliferation and melanosomal maturation in mouse melanocyte cultures. 相似文献
10.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes. 相似文献
11.
WALTER C. QUEVEDO JR. THOMAS J. HOLSTEIN JACOB DYCKMAN CHARLES J. MCDONALD ERNEST L. ISAACSON 《Pigment cell & melanoma research》2000,13(2):89-98
Exposure of C3HBYB/Wq hairless (hr/hr) mice to ultra‐violet radiation (UVR) for 15 days induced intense tanning of their dorsal skin. Small, dark freckles appeared first, gradually enlarging and coalescing as treatment progressed yielding a uniform tan. Histologically, the gross changes in skin color were matched initially by the appearance of scattered epidermal melanocytes that subsequently proliferated to form discrete, progressively expanding and abutting populations resulting in a uniform melanocyte network throughout the basal layer of the interfollicular epidermis. In contrast, when applied topically before each daily exposure to UVR, a cream or lotion vehicle containing both vitamins C and E (Vits C/E) inhibited UVR‐induced erythema and tanning. Application of Vits C/E, both before and after irradiation, was no more effective in providing photoprotection than pre‐treatment only. At the tissue level, UVR‐induced proliferation and melanogenesis of melanocytes were reduced compared with irradiated controls. The density of individual melanocyte populations was reduced, as was the number of melanocyte populations achieving merger (confluence) with others. Confluence grades and cell counts, estimating the maximum density of melanocyte populations in UVR–Vits C/E‐treated mice, were approximately two thirds those of UVR–vehicle‐treated controls. However, tanning was only one fifth that of UVR–vehicle‐treated controls, suggesting that melanogenesis was also inhibited. In addition to its inhibitory actions on irradiated melanocytes, Vits C/E also inhibited UVR‐induced suppression of contact hypersensitivity (CHS) in haired (Hr/hr) and hr/hr mice of the C3HBYB/Wq strain. The common denominators for most, if not all, of the influences of topically‐applied Vits C/E in muting the responses of the melanocyte and immune systems to UVR may stem from the vitamins’ combined ability to suppress UVR‐stimulated inflammation and its associated cascade of mediators. 相似文献
13.
14.
15.
《Organogenesis》2013,9(4):270-275
Transplantation therapy for humans is limited by insufficient availability of donor organs and outcomes are complicated by the toxicity of immunosuppressive drugs. Xenotransplantation is a strategy to overcome supply problems. Implantation of tissue obtained early during embryogenesis is a way to reduce immunogenicity of transplants. Insulin-producing cells originating from embryonic pig pancreas obtained very early following initiation of organogenesis [embryonic day 28 (E28)] engraft long-term in non-immune suppressed diabetic rats or rhesus macaques. Recently, we demonstrated engraftment of morphologically similar cells originating from adult porcine islets of Langerhans (islets) in rats previously transplanted with E28 pig pancreatic primordia. Our findings are consistent with induction of tolerance to a cell component of porcine islets induced by previous transplantation of embryonic pig pancreas, a phenomenon we designate organogenetic tolerance. Induction of organogenetic tolerance to porcine islets in humans with diabetes mellitus would enable the use of pigs as islet donors with no host immune suppression requirement. Adaptation of methodology for transplanting embryonic organs other than pancreas so as to induce organogenetic tolerance would revolutionize transplantation therapy. 相似文献
16.
17.
《Cell cycle (Georgetown, Tex.)》2013,12(5):751-759
In mammalian cells, microRNAs regulate the expression of target mRNAs generally by reducing their stability and/or translation, and thereby control diverse cellular processes such as senescence. We recently reported the differential abundance of microRNAs in young (early-passage, proliferating) relative to senescent (late-passage, non-proliferating) WI-38 human diploid fibroblasts. Here we report that the levels of the vast majority of mRNAs were unaltered in senescent compared to young WI-38 cells, while overall mRNA translation was potently reduced in senescent cells. Downregulation of Dicer or Drosha, two major enzymes in microRNA biogenesis, lowered microRNA levels, but, unexpectedly, it also reduced global translation. While a reduction in Dicer levels markedly enhanced cellular senescence, reduction of Drosha levels did not, suggesting that the Drosha/Dicer effects on translation may be independent of senescence, and further suggesting that microRNAs may directly or indirectly enhance mRNA translation in WI-38 cells. We discuss possible scenarios through which Dicer/Drosha/microRNAs could enhance translation. 相似文献
18.
Protein phosphorylation-mediated signaling networks regulate much of the cellular response to external stimuli, and dysregulation in these networks has been linked to multiple disease states. Significant advancements have been made over the past decade to enable the analysis and quantification of cellular protein phosphorylation events, but comprehensive analysis of the phosphoproteome is still lacking, as is the ability to monitor signaling at the network level while comprehending the biological implications of each phosphorylation site. In this review we highlight many of the technological advances over the past decade and describe some of the latest applications of these tools to uncover signaling networks in a variety of biological settings. We finish with a concise discussion of the future of the field, including additional advances that are required to link protein phosphorylation analysis with biological insight. 相似文献
19.
Huilin Zhou Claudio P Albuquerque Jason Liang Taymond T Suhandynata Stephanie Weng 《Cell cycle (Georgetown, Tex.)》2010,9(17):3479-3484
Cells are highly responsive to their environment. One of the main strategies used by cells in signal transduction is protein phosphorylation, a reversible modification that regulates numerous biological processes. Misregulation of phosphorylation-mediated processes is often implicated in many human diseases and cancers. A global and quantitative analysis of protein phosphorylation provides a powerful new approach and has the potential to reveal new insights in signaling pathways. Recent technological advances in high resolution mass spectrometers and multidimensional liquid chromatography, combined with the use of stable isotope labeling of proteins, have led to the application of quantitative phosphoproteomics to study in vivo signal transduction events on a proteome-wide scale. Here we review recent advancements in quantitative phosphoproteomic technologies, discuss their potentials and identify areas for future development. A key objective of proteomic technology is its application to addressing biological questions. We will therefore describe how current quantitative phosphoproteomic technology can be used to study the molecular basis of phosphorylation events in the DNA damage response.Key words: proteomics, mass spectrometry, DNA damage response, phosphorylation, HILIC, SILAC 相似文献