首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of telomeres is implicated in chromosome stabilization and cell immortalization. Telomerase, which catalyzes de novo synthesis of telomeres, is activated in germ cells and most cancers. Telomerase activity is regulated by gene expression for its catalytic subunit, TERT, whereas several lines of evidence have suggested a post-translational regulation of telomerase activity. Here we identify the 14-3-3 signaling proteins as human TERT (hTERT)-binding partners. A dominant-negative 14-3-3 redistributed hTERT, which was normally predominant in the nucleus, into the cytoplasm. Consistent with this observation, hTERT-3A, a mutant that could not bind 14-3-3, was localized into the cytoplasm. Leptomycin B, an inhibitor of CRM1/exportin 1-mediated nuclear export, or disruption of a nuclear export signal (NES)-like motif located just upstream of the 14-3-3 binding site in hTERT impaired the cytoplasmic localization of hTERT. Compared with wild-type hTERT, hTERT-3A increased its association with CRM1. 14-3-3 binding was not required for telomerase activity either in vitro or in cell extracts. These observations suggest that 14-3-3 enhances nuclear localization of TERT by inhibiting the CRM1 binding to the TERT NES-like motif.  相似文献   

2.
3.
4.
5.
6.
Here, we investigated the role of telomerase on Bcl-2-dependent apoptosis. To this end, the 4625 Bcl-2/Bcl-xL bispecific antisense oligonucleotide and the HA14-1 Bcl-2 inhibitor were used. We found that apoptosis induced by 4625 oligonucleotide was associated with decreased Bcl-2 protein expression and telomerase activity, while HA14-1 triggered apoptosis without affecting both Bcl-2 and telomerase levels. Interestingly, HA14-1 treatment resulted in a profound change from predominantly nuclear to a predominantly cytoplasmic localization of hTERT. Downregulation of endogenous hTERT protein by RNA interference markedly increased apoptosis induced by both 4625 and HA14-1, while overexpression of wild-type hTERT blocked Bcl-2-dependent apoptosis in a p53-independent manner. Catalytically and biologically inactive hTERT mutants showed a similar behavior as the wild-type form, indicating that hTERT inhibited the 4625 and HA14-1-induced apoptosis regardless of telomerase activity and its ability to lengthening telomeres. Finally, hTERT overexpression abrogated 4625 and HA14-1-induced mitochondrial dysfunction and nuclear translocation of hTERT. In conclusion, our results demonstrate that hTERT is involved in mitochondrial apoptosis induced by targeted inhibition of Bcl-2.  相似文献   

7.
8.
9.
Telomerase activation represents an early step in carcinogenesis. Increased telomerase activity in cervical cancer suggests a potential target for the development of novel therapeutic drugs. The aim of this study is to investigate the impact of telomerase activity on the biological features of HeLa cells and the possible mechanisms of enhanced apoptosis rate induced by sodium butyrate after telomerase inhibition. We introduced vectors encoding dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker into HeLa cells. Thus we assessed the biological effects of telomerase activity on telomere length, cell proliferation, chemosensitivity and radiosensitivity. In order to understand the mechanisms in which DN-hTERT enhances the apoptosis induced by sodium butyrate, we detected the release status of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Ectopic expression of DN-hTERT resulted in inhibition of telomerase activity, reduction of telomere length, decreased colony formation ability, and loss of tumorigenicity in nude mice. Moreover, DN-hTERT transfected HeLa cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance to radiation and chemotherapeutic agents. Our data demonstrate that elevated release level of cytochrome c and AIF from mitochondria might contribute to the enhanced apoptosis in DN-hTERT transfected HeLa cells after treatment with sodium butyrate. Inhibition of telomerase might serve as a promising adjunctive therapy combined with conventional therapy in cervical cancer. Both of them contributed equally to this work.  相似文献   

10.
11.
12.
13.
14.
Telomerase catalytic subunit (TERT) seems a key factor controlling telomerase activity, telomere length, and cell growth. To further address this issue, we forced expression of a catalytically inactive mutant human TERT (hTERT) in hTERT-immortalised sheep fibroblasts to examine its effects. Expression of mutant hTERT compromised telomerase activity reconstituted by wild-type hTERT in a manner directly attributable to mutant hTERT expression level. High levels of mutant hTERT expression inhibited cell growth with a subset of cells entering replicative senescence. Furthermore, significant telomere attrition was evident in two of three clones with high levels of mutant hTERT expression. Our findings are consistent with the notion that hTERT homodimers are necessarily required to form a functional telomerase complex at the telomere substrate. We also highlight the requirement of a more thorough understanding of telomerase- and telomere-associated factors to understand fully the interplay that governs telomere homeostasis in vitro and in vivo.  相似文献   

15.
The Hsp90-associated protein p23 modulates Hsp90 activity during the final stages of the chaperone pathway to facilitate maturation of client proteins. Previous reports indicate that p23 cleavage induced by caspases during cell death triggers destabilization of client proteins. However, the specific role of truncated p23 (Δp23) in this process and the underlying mechanisms remain to be determined. One such client protein, hTERT, is a telomerase catalytic subunit regulated by several chaperone proteins, including Hsp90 and p23. In the present study, we examined the effects of p23 cleavage on hTERT stability and telomerase activity. Our data showed that overexpression of Δp23 resulted in a decrease in hTERT levels, and a down-regulation in telomerase activity. Serine phosphorylation of Hsp90 was significantly reduced in cells expressing high levels of Δp23 compared with those expressing full-length p23. Mutation analyses revealed that two serine residues (Ser-231 and Ser-263) in Hsp90 are important for activation of telomerase, and down-regulation of telomerase activity by Δp23 was associated with inhibition of cell growth and sensitization of cells to cisplatin. Our data aid in determining the mechanism underlying the regulation of telomerase activity by the chaperone complex during caspase-dependent cell death.  相似文献   

16.
17.
Telomere length maintenance, an activity essential for chromosome stability and genome integrity, is regulated by telomerase- and telomere-associated factors. The DNA repair protein Ku (a heterodimer of Ku70 and Ku80 subunits) associates with mammalian telomeres and contributes to telomere maintenance. Here, we analyzed the physical association of Ku with human telomerase both in vivo and in vitro. Antibodies specific to human Ku proteins precipitated human telomerase in extracts from tumor cells, as well as from telomerase-immortalized normal cells, regardless of the presence of DNA-dependent protein kinase catalytic subunit. The same Ku antibodies also precipitated in vitro reconstituted telomerase, suggesting that this association does not require telomeric DNA. Moreover, Ku associated with the in vitro translated catalytic subunit of telomerase (hTERT) in the absence of telomerase RNA (hTR) or telomeric DNA. The results presented here are the first to report that Ku associates with hTERT, and this interaction may function to regulate the access of telomerase to telomeric DNA ends.  相似文献   

18.
Telomere homeostasis, a process that is essential for continued cell proliferation and genomic stability, is regulated by endogenous telomerase and a collection of associated proteins. In this paper, a protein called KIP (previously reported as a protein that binds specifically to DNA-dependent protein kinase), has been identified as a telomerase-regulating activity based on the following pieces of evidence. First, complexes between KIP and the catalytic subunit of telomerase (hTERT) were identified using the yeast two-hybrid technique. Second, antibodies specific to KIP immunoprecipitate human telomerase in cell-free extracts. Third, immunolocalization experiments demonstrate that KIP is a nuclear protein that co-localizes with hTERT in cells. Fourth, KIP binds to hTERT both in vitro and in vivo in the absence of human telomerase RNA or telomeric DNA, thus defining the catalytic subunit of telomerase as the site of physical interaction. Fifth, co-immunoprecipitation experiments suggest that KIP-hTERT complexes form readily in cells and that overexpression of KIP in telomerase-positive cells increases endogenous telomerase activity. Finally, continued overexpression of KIP (60 population doublings) resulted in cells with elongated telomeres; thus, KIP directly or indirectly stimulates telomerase activity through hTERT and contributes to telomere lengthening. The collective data in this paper suggest that KIP plays a positive role in telomere length maintenance and/or regulation and may represent a novel target for anti-cancer drug development.  相似文献   

19.
20.
LPTS/PinX1, a telomerase inhibitor composed of 328 amino acids, binds to the telomere associated protein Pin2/TRF1 and to the telomerase catalytic subunit hTERT. However, the mechanism by which LPTS/PinX1 regulates telomerase activity remains unclear. Here we show, for the first time, that LPTS/PinX1 uses different domains to interact with Pin2/TRF1 and hTERT. The LPTS/PinX1254-289 fragment specifically binds to Pin2/TRF1, and LPTS/PinX1290-328 can associate with hTERT. Compared with the full-length LPTS/PinX1 protein, LPTS/PinX1290-328 shows stronger in vitro telomerase inhibitory activity. Moreover, the LPTS/PinX1 protein was recruited to telomeres for binding to Pin2/TRF1. Overexpression of LPTS/PinX1290-328, which contains a nucleolus localization signal, in cells resulted in telomere shortening and progressive cell death. Conversely, telomere elongation was induced by expression of the dominant-negative LPTS/PinX11-289. Our results suggest that the C-terminal fragment of LPTS/PinX1 (LPTS/PinX1290-328) contains a telomerase inhibitory domain that is required for the inhibition of telomere elongation and the induction of cell crisis. Our studies also provide evidence that LPTS/PinX1 interaction with Pin2/TRF1 may play a role in the stabilization of telomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号