共查询到20条相似文献,搜索用时 0 毫秒
1.
Penicillium dipodomyis is thought to be an exclusively asexual fungus associated with Kangaroo Rats, Dipodomys species, and is unique among Penicillium species in growing at 37°C but producing no known toxins. Lack of recombination within P. dipodomyis would result in limited adaptive flexibility but possibly enhance local adaptation and host selection via maintenance of favourable genotypes. Here, analysis of DNA sequence data from five protein-coding genes shows that recombination occurs within P. dipodomyis on a small spatial scale. Furthermore, detection of mating-type alleles supports outcrossing and a sexual cycle in P. dipodomyis. P. dipodomyis was a weaker competitor in in vitro assays with other Penicillium species found in association with Kanagaroo rats. Bayesian species level analysis suggests that the P. dipodomyis lineage diverged from closely related species also found in cheek pouches of Kangaroo Rats and their stored seeds about 11 million years ago, a similar divergence time as Dipodomys from its sister rodent taxa. 相似文献
2.
Reconstruction of phylogenetic relationships among recently diverged species is complicated by three general problems: segregation of polymorphisms that pre-date species divergence, gene flow during and after speciation, and intra-locus recombination. In light of these difficulties, the Y chromosome offers several important advantages over other genomic regions as a source of phylogenetic information. These advantages include the absence of recombination, rapid coalescence, and reduced opportunity for interspecific introgression due to hybrid male sterility. In this report, we test the phylogenetic utility of Y-chromosomal sequences in two groups of closely related and partially inter-fertile Drosophila species. In the D. bipectinata species complex, Y-chromosomal loci unambiguously recover the phylogeny most consistent with previous multi-locus analysis and with reproductive relationships, and show no evidence of either post-speciation gene flow or persisting ancestral polymorphisms. In the D. simulans species complex, the situation is complicated by the duplication of at least one Y-linked gene region, followed by intrachromosomal recombination between the duplicate genes that scrambles their genealogy. We suggest that Y-chromosomal sequences are a useful tool for resolving phylogenetic relationships among recently diverged species, especially in male-heterogametic organisms that conform to Haldane's rule. However, duplication of Y-linked genes may not be uncommon, and special care should be taken to distinguish between orthologous and paralogous sequences. 相似文献
3.
Several reports from mammals indicate that an increase in the mutation rate in late-replicating regions may, in part, be responsible for the observed genomic heterogeneity in neutral substitution rates and levels of diversity, although the mechanisms for this remain poorly understood. Recent evidence also suggests that late replication is associated with high mutability in yeast. This then raises the question as to whether a similar effect is operating across all eukaryotes. Limited evidence from one chromosome arm in Drosophila melanogaster suggests the opposite pattern, with regions overlapping early-firing origins showing increased levels of diversity and divergence. Given the availability of genome-wide replication timing profiles for D. melanogaster, we now return to this issue. Consistent with what is seen in other taxa, we find that divergence at synonymous sites in exon cores, as well as divergence at putatively unconstrained intronic sites, is elevated in late-replicating regions. Analysis of genes with low codon usage bias suggests a ~30% difference in mutation rate between the earliest and the latest replicating sequence. Intronic sequence suggests a more modest difference. We additionally show that an increase in diversity in late-replicating sequences is not owing to replication timing covarying with the local recombination rate. If anything, the effects of recombination mask the impact of replication timing. We conclude that, contrary to prior reports and consistent with what is seen in mammals and yeast, there is indeed a relationship between rates of nucleotide divergence and diversity and replication timing that is consistent with an increase in the mutation rate during late S-phase in D. melanogaster. It is therefore plausible that such an effect might be common among eukaryotes. The result may have implications for the inference of positive selection. 相似文献
4.
5.
利用两个核基因座位C3H和GI, 对重叠分布于中国东南部的两个松属(Pinus)物种马尾松(P. massoniana)和黄山松(P. hwangshanensis)的22个群体88个个体进行了遗传多样性和种间分化模式研究。在这两个核基因座位上, 两种植物都表现出较低的核苷酸多样性水平(马尾松πsil = 0.001 71; 黄山松πsil = 0.003 40), 但是马尾松要显著低于黄山松; 在种内分化水平上, 马尾松的种内遗传分化也明显低于黄山松(马尾松FST = 0.059; 黄山松FST = 0.339)。这可能是由于黄山松的海拔分布高于马尾松, 而高海拔分布使黄山松的分布区域更加片段化, 促使其形成较高的种内遗传多样性和遗传分化。分子变异分析(AMOVA)发现, 两物种基于两个核基因座位的种间差异为48.86%, 而GI基因座位上的种间差异明显高于C3H座位(GI: 77.24%, C3H: 20.48%), 同时, 基因谱系显示两物种的共享单倍型仅在C3H座位上存在。结合这两个基因的功能, 推测GI基因可能在物种形成过程中受到了一定的选择压力, 因为GI基因参与调控植物的开花时间, 而C3H与木质素表达水平的调控有关。不同的选择压力使得GI的进化速度相对较快, 从而加速了黄山松和马尾松的物种分化。 相似文献
6.
Lovett ST 《Molecular cell》2003,11(3):554-556
Replication forks frequently break and must be repaired by recombination. A reconstituted reaction now allows the factors that coordinate conversion from a recombination intermediate back to a replication fork to be defined. The PriA protein plays a key role in this control. 相似文献
7.
The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species 总被引:7,自引:0,他引:7 下载免费PDF全文
We analyzed the effects of mating system and recombination rate on single nucleotide polymorphisms using 14 single-copy nuclear loci from single populations of five species of wild tomatoes (Solanum section Lycopersicon). The taxa investigated comprise two self-compatible (SC) and three self-incompatible (SI) species. The observed reduction in nucleotide diversity in the SC populations compared to the SI populations is much stronger than expected under the neutral effects of the mating system on effective population size. Importantly, outgroup sequences available for 11 of the 14 loci yield strong positive correlations between silent nucleotide diversity and silent divergence, indicative of marked among-locus differences in mutation rates and/or selective constraints. Furthermore, using a physical estimate of local recombination rates, we find that silent nucleotide diversity (but not divergence) is positively correlated with recombination rate in two of the SI species. However, this correlation is not nearly as strong as in other well-characterized species (in particular, Drosophila). We propose that nucleotide diversity in Lycopersicon is dominated mainly by differences in neutral mutation rates and/or selective constraints among loci, demographic processes (such as population subdivision), and background selection. In addition, we hypothesize that the soil seed bank plays an important role in the maintenance of the large genetic diversity in the SI species (in particular L. peruvianum). 相似文献
8.
Ross CL Dyer KA Erez T Miller SJ Jaenike J Markow TA 《Molecular biology and evolution》2003,20(7):1143-1157
Among major taxonomic groups, microsatellites exhibit considerable variation in composition and allele length, but they also show considerable conservation within many major groups. This variation may be explained by slow microsatellite evolution so that all species within a group have similar patterns of variation, or by taxon-specific mutational or selective constraints. Unfortunately, comparing microsatellites across species and studies can be problematic because of biases that may exist among different isolation and analysis protocols. We present microsatellite data from five Drosophila species in the Drosophila subgenus: D. arizonae, D. mojavensis, and D. pachea (three cactophilic species), and D. neotestacea and D. recens (two mycophagous species), all isolated at the same time using identical protocols. For each species, we compared the relative abundance of motifs, the distribution of repeat size, and the average number of repeats. Dimers were the most abundant microsatellites for each species. However, we found considerable variation in the relative abundance of motif size classes among species, even between sister taxa. Frequency differences among motifs within size classes for the three cactophilic species, but not the two mycophagous species, are consistent with other studied Drosophila. Frequency distributions of repeat number, as well as mean size, show significant differences among motif size classes but not across species. Sizes of microsatellites in these five species are consistent with D. virilis, another species in the subgenus Drosophila, but they have consistently higher means than in D. melanogaster, in the subgenus Sophophora. These results confirm that many aspects of microsatellite variation evolve quickly but also are subject to taxon-specific constraints. In addition, the nature of microsatellite evolution is dependent on temporal and taxonomic scales, and some variation is conserved across broad taxonomic levels despite relatively high rates of mutation for these loci. 相似文献
9.
Wing shape heritability and morphological divergence of the sibling species Drosophila mercatorum and Drosophila paranaensis 总被引:1,自引:0,他引:1
The fruit-flies Drosophila paranaensis and Drosophila mercatorum pararepleta are sibling species belonging to the repleta group. Females of these two species are normally considered to be morphologically indistinguishable while males only differ consistently in the morphology of their genitalia. These species are sympatric throughout a large area of their geographic distribution. In this study, we investigated the degree of morphological divergence between D. paranaensis and D. mercatorum pararepleta based on morphometric analysis of their wings. The ellipse method was used to describe the placement of the longitudinal and transversal wing veins as well as the size of the wing and the shape of its outline. The heritability under laboratory and field conditions was also estimated from the parameters generated. Multivariate analysis showed that wing morphology possessed sufficient differences to discriminate between the two species with a successful classification rate of 95-98% for females and 82-87% for males. The results of the autoclassification were confirmed by a cross-validation test for females (92-96%). Most measurements possessed significant natural heritability (a mean of 0.48 for D. mercatorum and 0.88 for D. paranaensis), indicating that the variation observed was related to differences in genes acting additively. The principal difference between the two species was in the placement of the posterior transverse wing vein. However, the pattern of morphological variation in the wings of both species was similar, possibly because of shared restrictions in wing development pathways. 相似文献
10.
The Olfactory Specific-E and -F genes (OS-E and OS-F) belong to the odorant-binding protein gene family, which includes the general odorant-binding proteins and the pheromone-binding proteins. In Drosophila melanogaster, these genes are arranged in tandem in a genomic region near the centromere of chromosome arm 3R. We examined the pattern of DNA sequence variation in an approximately 7-kb genomic region encompassing the two OS genes in four species of the melanogaster subgroup of Drosophila and in a population sample of D. melanogaster. We found that both the OS-E and the OS-F gene are present in all surveyed species. Nucleotide divergence estimates would support that the two genes are functional, although they diverge in their functional constraint. The pattern of nucleotide variation in D. melanogaster also differed between genes. Variation in the OS-E gene region exhibited an unusual and distinctive pattern: (i) a relatively high number of fixed amino acid replacements in the encoded protein and (ii) a peak of nucleotide polymorphism around the OS-E gene. These results are unlikely under the neutral model and suggest the action of natural selection in the evolution of the two odorant-binding protein genes. 相似文献
11.
12.
中国黑腹果蝇种组40种果蝇的核型多样性研究 总被引:1,自引:0,他引:1
通过传统的敲片、Giemsa染色的方法制片对中国黑腹果蝇种组(Drosophilamelanogasterspeciesgroup)8个种亚组40种果蝇的染色体进行了分析,共发现18种核型,即A、A′′、C、C′、C′′、C′′′、C′′′′、D、D′、D′′、E、E′、E′′、F、F′、G、H和I,其中A、A′′、C′′′、C′′′′、D′′和F′为新发现的核型。8个种亚组的基本核型分别是:嗜凤梨果蝇种亚组(D.ananassaesubgroup)的核型为F、F′、G和H型;牵牛花果蝇种亚组(D.eleganssubgroup)的核型为A和A′′型;细针果蝇种亚组(D.eugracilissubgroup)的核型为C型;嗜榕果蝇种亚组(D.ficusphilasubgroup)的核型为C′型;黑腹果蝇种亚组(D.melanogastersubgroup)的核型为C和C′型;山果蝇种亚组(D.montiumsubgroup)的核型为C、C′、C′′、D、D′、D′′、E、E′、E′′和I型;铃木氏果蝇种亚组(D.suzukiisubgroup)的核型为C′′′和C′′′′型;高桥氏果蝇种亚组(D.takahashiisubgroup)的核型为C、C′′′和C′′′′型。透明翅果蝇(D.lucipennis)雌性核型2n=8,雄性核型2n=7,雄性Ⅳ号染色体为染色体单体。此外还发现,吉川氏果蝇(D.kikkawai)、林氏果蝇(D.lini)、奥尼氏果蝇(D.ogumai)、拟嗜凤梨果蝇(D.pseudoananassae)和叔白颜果蝇(D.triauraria)5种果蝇有B染色体。本文确定了D.sp.likeelegans、D.sp.likenyinyii、D.sp.liketrapezifrons1、D.sp.liketakahashii、D.sp.liketrapezifrons2和D.sp.likeauraria等6个未描述种的核型和1个新记录种吉里果蝇(D.giriensis)的核型。本研究证明了在黑腹果蝇种组内、亚组内、种内和单雌系内的核型多样性,为果蝇遗传和进化提供了进一步的细胞学证据。 相似文献
13.
14.
15.
The mayaguana triad of the Drosophila repleta species group includes D. mayaguana, D. straubae, and D. parisiena, the latter two of which are very similar when examined morphologically. Many morphological characters used to define these taxa are quantitative and overlap substantially among some forms--it is only through suites of such characters that species can be identified. We apply Population Aggregation Analysis and tree building methods to five rapidly evolving gene regions--the mitochondrial AT rich region and the nuclear acetylcholinesterase, hunchback, mastermind, and vestigial loci to test the morphological species delineations within the morphocryptic mayaguana triad. We find that D. mayaguana is diagnosable using DNA sequences, but the other two species form a non-diagnosable paraphyletic assemblage. A single ecological factor, oviposition substrate, is an important diagnostic character distinguishing D. straubae from D. parisiena, highlighting the importance of examining a diverse array of data (morphological, molecular, ecological, and behavioral) when defining species limits. 相似文献
16.
Selection, recombination, and the demographic history of a species can all have profound effects on genomewide patterns of variability. To assess the impact of these forces in the genome of Drosophila miranda, we examine polymorphism and divergence patterns at 62 loci scattered across the genome. In accordance with recent findings in D. melanogaster, we find that noncoding DNA generally evolves more slowly than synonymous sites, that the distribution of polymorphism frequencies in noncoding DNA is significantly skewed toward rare variants relative to synonymous sites, and that long introns evolve significantly slower than short introns or synonymous sites. These observations suggest that most noncoding DNA is functionally constrained and evolving under purifying selection. However, in contrast to findings in the D. melanogaster species group, we find little evidence of adaptive evolution acting on either coding or noncoding sequences in D. miranda. Levels of linkage disequilibrium (LD) in D. miranda are comparable to those observed in D. melanogaster, but vary considerably among chromosomes. These patterns suggest a significantly lower rate of recombination on autosomes, possibly due to the presence of polymorphic autosomal inversions and/or differences in chromosome sizes. All chromosomes show significant departures from the standard neutral model, including too much heterogeneity in synonymous site polymorphism relative to divergence among loci and a general excess of rare synonymous polymorphisms. These departures from neutral equilibrium expectations are discussed in the context of nonequilibrium models of demography and selection. 相似文献
17.
Throughout the living world, genetic recombination and nucleotide substitution are the primary processes that create the genetic variation upon which natural selection acts. Just as analyses of substitution patterns can reveal a great deal about evolution, so too can analyses of recombination. Evidence of genetic recombination within the genomes of apparently asexual species can equate with evidence of cryptic sexuality. In sexually reproducing species, nonrandom patterns of sequence exchange can provide direct evidence of population subdivisions that prevent certain individuals from mating. Although an interesting topic in its own right, an important reason for analysing recombination is to account for its potentially disruptive influences on various phylogenetic-based molecular evolution analyses. Specifically, the evolutionary histories of recombinant sequences cannot be accurately described by standard bifurcating phylogenetic trees. Taking recombination into account can therefore be pivotal to the success of selection, molecular clock and various other analyses that require adequate modelling of shared ancestry and draw increased power from accurately inferred phylogenetic trees. Here, we review various computational approaches to studying recombination and provide guidelines both on how to gain insights into this important evolutionary process and on how it can be properly accounted for during molecular evolution studies. 相似文献
18.
Understanding the forces that govern the distribution of single nucleotide polymorphisms is vital for many of their applications. Here we conducted a systematic search to quantify how both SNP density and human–chimpanzee divergence vary around different repetitive sequences. We uncovered a highly complicated picture in which these quantities often differ significantly from the genome-wide average in regions extending more than 20 kb, the direction of the deviation varying with repeat number and motif. AT microsatellites in particular are potent predictors of SNP density, long (AT)n repeat tracts tending to be found in regions of significantly reduced SNP density and low GC content. Although the causal relationships remain difficult to determine, our results indicate a strong relationship between microsatellites and the DNA that flanks them. Our results help to explain the mixed picture that emerges from other studies and have important implications for the way in which genetic diversity is distributed in our genomes. 相似文献
19.
Over the last several decades many picture-winged Drosophila have become less common in both geographical distribution and local population size (pers. obs., Foote pers. comm., Montgomerey pers. comm.). Here we report on a study of two Hawaiian Drosophila species, D. engyochracea, and D. hawaiiensis, to determine the impact that changes in population sizes over the past thirty years have had on the genetic diversity of these species. D. engyochracea is known from only two locations on the Island of Hawai'i (Kipuka Ki and Kipuka Pua'ulu), while D. hawaiiensis is currently more wide spread across Hawai'i Island. We collected 65 D. hawaiiensis and 66 D. engyochracea from two forest patches (kipuka) isolated by a 400 year old volcanic ash deposit. DNA sequence data for 515 bases of the mitochondrial gene COII was analyzed for both species to estimate relative total genetic diversity as well as inter-kipuka gene flow. The more wide spread species, D. hawaiiensis, has more genetic diversity (23 vs. 11 unique haplotypes) than the rarer species, D. engyochracea. The distribution of haplotypes in the kipuka is consistent with more gene flow in D. engyochracea than in D. hawaiiensis. Phylogenetic analysis indicates a small number of individuals morphologically identified as one species but have DNA sequence diagnostic for the other species. These results are consistent with these individuals being descendant from hybrids between species. 相似文献
20.
Domenico L. Palenzona Annamaria Zattoni 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1970,40(8):345-346
Summary Artificial selection for wing length in Drosophila melanogaster resulted in changed crossing-over frequencies between three marker genes on the 2nd chromosome, b, cn and vg.The results suggest that artificial selection is a causal agent in producing the observed changes; moreover it is suggested that the modifications in cross-over frequency are controlled by extra-nuclear factors.Research supported by C.N.R. Consiglio Nazionale delle Ricerche Roma, Grant n. 115.2298.4791. 相似文献