首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the development of cerebral cortex, newborn pyramidal neurons originated from the ventricle wall migrate outwardly to the superficial layer of cortex under the guidance of radial glial filaments. Whether this radial migration of young neurons is guided by gradient of diffusible factors or simply driven by a mass action of newly generated neurons at the ventricular zone is entirely unknown, a potential guidance mechanism that has long been overlooked. Our recent study showed that a guidance molecule semaphorin-3A, which is expressed in descending gradient across cortical layers, may serve as a chemoattractive guidance signal for radial migration of newborn cortical neurons toward upper layers. We hypothesize the existence of four groups of extracellular factors that can guide the radial migration of young neurons: (1) attractive factors expressing in superficial layers of cortex, (2) repulsive factors enriched in the ventricular zone, (3) pro-migratory factors uniformly expressed in all cortical layers and (4) stop signals locally expressed in the outmost layer of cortex.Key words: radial migration, cortex, guidance, semaphorin, diffusible factors, growth coneThe mammalian cerebral cortex has the typical laminar structure, the formation of which is essential for neurons in each cortical layer to establish the specific input and output connections with other brain regions. The development of the cortical laminar structure is known to involve the well-coordinated radial migration of newborn pyramidal neurons during development.1 After young neurons are generated from the ventricular zone (VZ) and subventricular zone (SVZ), they leave their birthplace and migrate along radial glial filaments toward the surface of cortical plate (CP), crossing existing cortical layers composed of earlier born neurons and eventually settling down beneath the marginal zone (MZ, layer I).13 It is generally accepted that the adhesion between neurons and radial glial filaments provides the directionality for these young neurons, and the targeting of neurons to specific lamina was controlled by the selective detachment of migrating neurons from radial glial fibers upon reaching the designated cortical layer.2,3 However, we believe that the radial glial fibers can only serve as the adhesive scaffold for migrating neurons and constrain their migration in the radial dimension; it remains an open question regarding the nature of the signals that cause newborn neurons to migrate consistently outward along the fiber rather than inward. Whether the radial migration of cortical neurons is guided by gradient of diffusible factors or simply driven by a mass action of newly generated neurons at the VZ is entirely unknown, a potential guidance mechanism that has long been overlooked.Recently we found that the radial migration of layer II/III cortical neurons during development is guided by an extracellular guidance molecule semaphorin-3A (Sema3A).4 We observed that Sema3A is expressed in a descending gradient across the cortical layers, whereas its receptor neuropilin-1 (NP1) is expressed at a high level in migrating neurons. By in utero electroporation, we were able to monitor the migration of a subpopulation of cortical neurons in their native environment and examine the effect of perturbing Sema3A signaling. We found that downregulation or conditional knockout of NP1 in young neurons impeded their radial migration with severe misorientation of affected neurons during their migration without altering their cell fate. Studies in cultured cortical slices further showed the requirement of the endogenous gradient of Sema3A for the proper migration of newborn neurons. Results from transwell chemotaxis assays in dissociated culture of newborn cortical neurons also supported the notion that Sema3A attracts the migration of these neurons through the receptor NP1. Thus, Sema3A may serve as a chemoattractive guidance signal for the radial migration of newborn cortical neurons toward upper layers. This is the first demonstration that radial migration of cortical neurons is guided by gradient of extracellular guidance factors. This study also suggests that guidance factors may guide the radial migration by their actions on the growth cone of the leading process of migrating neurons, via mechanisms similar to that found for their actions on axon guidance and dendritic orientation, followed by long-range cytoplasmic signaling that coordinates the forward motility of the entire neuron.5In this study, we have only observed an attractive effect of Sema3A in the radial migration of the layer II/III cortical neurons. However, to form the highly ordered laminar structure of the cortex, the entire process of neuronal migration is likely to depend on coordinated actions of multiple factors in the developing cortex, including other semaphorin family members and other guidance molecules, e.g., slits6 and ephrins,7 which are also expressed in the CP. We hypothesize that four groups of extracellular factors orchestrate to promote the proper radial migration and cortical lamination: (1) factors that are expressed in superficial layers of cortex and in a descending gradient, like Sema3A, may attract the upward migration of newborn neurons (attractive factors), (2) factors enriched in the VZ may exert repulsive action and help to “push” newborn neurons out of their birthplace (repulsive factors), (3) those factors widely expressed in all cortical layers may promote the motility of migrating neurons (pro-migratory factors) and (4) Some repulsive cues may be locally expressed in the superficial layer of cortex to prevent the over migration of neurons when they have arrived at the outmost layer (stop signal). Under the guidance of these four groups of factors, newborn neurons migrate all the way from VZ to the outmost layer of CP and then settle down. One of our recent tasks is to try to identify these four groups of factors.If the radial migration and cortical lamination are guided by diffusible factors, why is radial glial system necessary for this migration process? In other words, why earlier-born neurons in different layers cannot provide the supportive adhesion to young neurons during their radial migration? A potential explanation is that neurons in cortex undergo maturation after terminating their migration, accompanying with changes in their expression profiles of adhesion ligands, and become less and less supportive to the neuronal migration. In contrast, as a kind of cortical progenitor cells, radial glial cells maintain a relatively ‘young’ state and continue to express supportive adhesion ligands over a very long developmental stage. Thus, only the radial glial filament is capable of providing a bridge for newborn neurons to migrate over a very long distance across the non-permissive cell layers. In summary, we believe that during the cortical radial migration, signals from diffusible factors override the adhesive signal from radial glial fibers to promote the appropriate migration and placement of newborn neurons.? Open in a separate windowFigure 1A schematic diagram for the guidance of cortical radial migration by diffusible factors. (A) A model for the distribution of four groups of guidance factors in developing cortex. Radial glial filaments are shown in red, young neurons are in green. There may exist a descending gradient of attractive factors in upper cortical layers (yellow) and an ascending gradient of repulsive factors (blue) near the ventricular zone (VZ). Stop signals (purple) may come from the surface of cortex, and pro-migratory factors (dots) may be widely distributed. (B) Representative image of EGFP-labeled neurons migrating along radial glial filaments in the cortical tissue of E20 mouse. Sections were counterstained with DAPI (Red). Scale bar, 100 µm.  相似文献   

2.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984-985; Berry and Rogers, 1965, J. Anat. 99:691-709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodeoxyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells continued to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slice, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61-84; Hatten and Mason, 1990, Experientia 46:907-916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cultures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells.  相似文献   

3.
We show that the neural cell recognition molecule Close Homolog of L1 (CHL1) is required for neuronal positioning and dendritic growth of pyramidal neurons in the posterior region of the developing mouse neocortex. CHL1 was expressed in pyramidal neurons in a high-caudal to low-rostral gradient within the developing cortex. Deep layer pyramidal neurons of CHL1-minus mice were shifted to lower laminar positions in the visual and somatosensory cortex and developed misoriented, often inverted apical dendrites. Impaired migration of CHL1-minus cortical neurons was suggested by strikingly slower rates of radial migration in cortical slices, failure to potentiate integrin-dependent haptotactic cell migration in vitro, and accumulation of migratory cells in the intermediate and ventricular/subventricular zones in vivo. The restriction of CHL1 expression and effects of its deletion in posterior neocortical areas suggests that CHL1 may regulate area-specific neuronal connectivity and, by extension, function in the visual and somatosensory cortex.  相似文献   

4.
Genes expressed in layer-specific patterns in the mammalian cerebral cortex may play a role in specifying the identity of different cortical layers. Using PCR-differential display, we identified a cDNA that encodes rCNL3, a gene cloned previously by sequence homology to G-protein-coupled receptors. rCNL3 is expressed predominantly in layers 2-4 of the young rat cortex and in the developing and adult striatum. Cortical expression of rCNL3 begins postnatally at P3 and continues at high levels until around P15, while striatal expression begins at E20 and continues through adulthood. rCNL3 expression is not detectable in the ventricular zone precursors that generate the neurons of layers 2-4. The expression pattern of rCNL3 in the developing cortex suggests that rCNL3 is not involved in the initial specification of laminar fate, but rather may be involved with later differentiation events within the superficial cortical layers.  相似文献   

5.
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.  相似文献   

6.
Parnavelas JG  Nadarajah B 《Neuron》2001,31(6):881-884
During the development of the cerebral cortex, radial glia serve as a scaffold to support and direct neurons during their migration. This view is now changing in the light of emerging evidence showing that these cells have a much more dynamic and diverse role. A recent series of studies has provided strong support for their role as precursor cells in the ventricular zone that generate cortical neurons and glia, in addition to providing migration guidance.  相似文献   

7.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984–985; Berry and Rogers, 1965, J. Anat. 99:691–709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodexyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells contiuned to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slices, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61–84; Hatten and Mason, 1990, Experientia 46:907–916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cutures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
Modes of neuronal migration in the developing cerebral cortex   总被引:2,自引:0,他引:2  
The conventional scheme of cortical formation shows that postmitotic neurons migrate away from the germinal ventricular zone to their positions in the developing cortex, guided by the processes of radial glial cells. However, recent studies indicate that different neuronal types adopt distinct modes of migration in the developing cortex. Here, we review evidence for two modes of radial movement: somal translocation, which is adopted by the early-generated neurons; and glia-guided locomotion, which is used predominantly by pyramidal cells. Cortical interneurons, which originate in the ventral telencephalon, use a third mode of migration. They migrate tangentially into the cortex, then seek the ventricular zone before moving radially to take up their positions in the cortical anlage.  相似文献   

9.
The establishment of a polarized morphology is essential for the development and function of neurons. During the development of the mammalian neocortex, neurons arise in the ventricular zone (VZ) from radial glia cells (RGCs) and leave the VZ to generate the cortical plate (CP). During their migration, newborn neurons first assume a multipolar morphology in the subventricular zone (SVZ) and lower intermediate zone (IZ). Subsequently, they undergo a multi-to-bipolar (MTB) transition to become bipolar in the upper IZ by developing a leading process and a trailing axon. The small GTPases Rap1A and Rap1B act as master regulators of neural cell polarity in the developing mouse neocortex. They are required for maintaining the polarity of RGCs and directing the MTB transition of multipolar neurons. Here we show that the Rap1 guanine nucleotide exchange factor (GEF) C3G (encoded by the Rapgef1 gene) is a crucial regulator of the MTB transition in vivo by conditionally inactivating the Rapgef1 gene in the developing mouse cortex at different time points during neuronal development. Inactivation of C3G results in defects in neuronal migration, axon formation and cortical lamination. Live cell imaging shows that C3G is required in cortical neurons for both the specification of an axon and the initiation of radial migration by forming a leading process.  相似文献   

10.
Development of the multilayered cerebral cortex involves extensive regulated migration of neurons arising from the deeper germinative layers of the mammalian brain. The anatomy and formation of the cortical layers has been well characterized; however, the underlying molecular mechanisms that control the migration and the final positioning of neurons within the cortex remain poorly understood. Here, we report evidence for a key role of Ena/VASP proteins, a protein family implicated in the spatial control of actin assembly and previously shown to negatively regulate fibroblast cell speeds, in cortical development. Ena/VASP proteins are highly expressed in the developing cortical plate in cells bordering Reelin-expressing Cajal-Retzius cells and in the intermediate zone through which newly born cells migrate. Inhibition of Ena/VASP function through retroviral injections in utero led to aberrant placement of early-born pyramidal neurons in the superficial layers of both the embryonic and the postnatal cortex in a cell-autonomous fashion. The abnormally placed pyramidal neurons exhibited grossly normal morphology and polarity. Our results are consistent with a model in which Ena/VASP proteins function in vivo to control the position of neurons in the mouse neocortex.  相似文献   

11.
Neuronal migration is crucial for the construction of neuronal architecture such as layers and nuclei. Most inhibitory interneurons in the neocortex derive from the basal forebrain and migrate tangentially; however, little is known about the mode of migration of these neurons in the cortex. We used glutamate decarboxylase (Gad)67-green fluorescent protein (GFP) knock-in embryonic mice with expression of GFP in gamma-aminobutyric acid (GABA)-ergic neurons and performed time-lapse analysis. In coronal slices, many GFP-positive neurons in the lower intermediate zone (IZ) and subventricular zone (SVZ) showed robust tangential migration from lateral to medial cortex, while others showed radial and non-radial migration mostly towards the pial surface. In flat-mount preparations, GFP-positive neurons of the marginal zone (MZ) showed multidirectional tangential migration. Some of these neurons descended toward the cortical plate (CP). Intracortical migration of these neurons was largely unaffected by a treatment that cleaves glycosylphosphatidylinositol (GPI) anchors. These findings suggest that tangential migration of cortical interneurons from lateral to medial cortex predominantly occurs in the IZ/SVZ and raise the possibility that a part of the pial surface-directed neurons in the IZ/SVZ reach the MZ, whereby they spread into the whole area of the cortex. At least a part of these neurons may descend toward the CP. Our results also suggest that intracortical migration of GABAergic neurons occurs independent of GPI-anchored proteins.  相似文献   

12.
Neuronal migration is, along with axon guidance, one of the fundamental mechanisms underlying the wiring of the brain. As other organs, the nervous system has acquired the ability to grow both in size and complexity by using migration as a strategy to position cell types from different origins into specific coordinates, allowing for the generation of brain circuitries. Guidance of migrating neurons shares many features with axon guidance, from the use of substrates to the specific cues regulating chemotaxis. There are, however, important differences in the cell biology of these two processes. The most evident case is nucleokinesis, which is an essential component of migration that needs to be integrated within the guidance of the cell. Perhaps more surprisingly, the cellular mechanisms underlying the response of the leading process of migrating cells to guidance cues might be different to those involved in growth cone steering, at least for some neuronal populations.The migration of newly born neurons is a precisely regulated process that is critical for the development of brain architecture. Neurons arise from the proliferative epithelium that covers the ventricular space throughout the neural tube, an area named the ventricular zone (VZ). From there, newly born neurons adopt two main strategies to disperse throughout the central nervous system (CNS), designated as radial and tangential migration (Hatten 1999; Marín and Rubenstein 2003). During radial migration, neurons follow a trajectory that is perpendicular to the ventricular surface, moving alongside radial glial fibers expanding the thickness of the neural tube. In contrast, tangentially migrating neurons move in trajectories that are parallel to the ventricular surface and orthogonal to the radial glia palisade (Fig. 1). Besides their relative orientation, some of the basic mechanisms underlying the movement of cells using each of these two modes of migration are also different. For example, radially migrating neurons often use radial glial fibers as substrate, whereas tangentially migrating neurons do not seem to require their support to migrate. Even so, neurons may alternate from radial to tangential movement and vice versa during the course of their migration. This suggests that both types of migrations share common principles, in particular those directly related to the cell biology of movement (Marín et al. 2006).Open in a separate windowFigure 1.Representative migrations in the developing CNS. Multiple migrations coexist during embryonic development at different areas of the central nervous system. This schema summarizes some of these migrations during the second week of the embryonic period in the mouse. Neurons use tangential and radial migration to reach their final destination; both strategies are used by the same neurons at different stages of development (i.e., cortical interneurons in the forebrain and precerebellar neurons in the hindbrain). (IML) intermediolateral region of the spinal cord; (IO) inferior olive nucleus; (LGE) lateral ganglionic eminence; (LRN) lateral reticular nucleus; (MGE) medial ganglionic eminence; (NCx) neocortex; (OB) olfactory bulb.One of the structures that better illustrates how both types of migrations are integrated during brain development is the cerebral cortex, and so we will primarily refer to studies performed on cortical neurons for this review. The adult cerebral cortex contains two main classes of neurons: glutamatergic cortical projection neurons (also known as pyramidal cells) and GABAergic interneurons. Pyramidal cells are generated in the ventricular zone (VZ) of the embryonic pallium—the roof of the telencephalon—and reach their final position by radial migration (Rakic 2007). In contrast, cortical interneurons are born in the subpallium—the base of telencephalon—and reach the cerebral cortex through a long tangential migration (Corbin et al. 2001; Marín and Rubenstein 2001).The earliest cortical neurons form a transient structure known as the preplate, around embryonic day 10 (E10) of gestation age in the mouse. This primordial layer consists of Cajal-Retzius cells and the first cohort of pyramidal neurons, which will eventually populate the subplate. Cajal-Retzius cells, which play important roles during neuronal migration, arise from discrete pallial sources and colonize the entire surface of the cortex through tangential migration (Bielle et al. 2005; Takiguchi-Hayashi et al. 2004; Yoshida et al. 2006). The next cohort of pyramidal cells forms the cortical plate (CP) by intercalating in the preplate and splitting this primitive structure in a superficial layer, the marginal zone (MZ or layer I), and a deep layer, the subplate. The development of the neocortex progresses with new waves of neurons that occupy progressively more superficial positions within the CP (Gupta et al. 2002; Marín and Rubenstein 2003). Birth dating studies have shown that layers II–VI of the cerebral cortex are generated in an “inside-out” sequence. Neurons generated earlier reside in deeper layers, whereas later-born neurons migrate past existing layers to form superficial layers (Angevine and Sidman 1961; Rakic 1974). In parallel to this process, GABAergic interneurons migrate to the cortex, where they disperse tangentially via highly stereotyped routes in the MZ, SP, and lower intermediate zone/subventricular zone (IZ/SVZ) (Lavdas et al. 1999). Interneurons then switch from tangential to radial migration to adopt their final laminar position in the cerebral cortex (Ang et al. 2003; Polleux et al. 2002; Tanaka et al. 2003).  相似文献   

13.
Neurotrophin-3 and its receptor TrkC are expressed during the development of the mammalian cerebral cortex. To examine whether neurotrophin-3 might play a role in the elaboration of layer-specific cortical circuits, slices of layer 6 and layers 2/3 neurons were cultured in the presence of exogenously applied neurotrophin-3. Results indicate that neurotrophin-3 promotes axonal branching of layer 6 axons, which target neurotrophin-3-expressing layers in vivo, and that it inhibits branching of layers 2/3 axons, which avoid neurotrophin-3-expressing layers. Such opposing effects of neurotrophin-3 on axonal branching were also observed with embryonic cortical neurons, indicating that the response to neurotrophin-3 is specified at early developmental stages, prior to cell migration. In addition to its effects on fiber branching, axonal guidance assays also indicate that neurotrophin-3 is an attractive signal for layer 6 axons and a repellent guidance cue for layers 2/3 axons. Experiments with specific antibodies to neutralize neurotrophin-3 in cortical membranes revealed that endogenous levels of neurotrophin-3 are sufficient to regulate branching and targeting of cortical axons. These opposing effects of neurotrophin-3 on specific populations of axons demonstrate that it could serve as one of the signals for the elaboration of local cortical circuits.  相似文献   

14.
15.
The mammalian cerebral cortex comprises six layers of neurons. Cortical progenitors in the ventricular zone generate neurons specific to each layer through successive cell divisions. Neurons of layer VI are generated at an early stage, whereas later-born neurons occupy progressively upper layers. The underlying molecular mechanisms of neurogenesis, however, are relatively unknown. In this study, we devised a system where the Notch pathway was activated spatiotemporally in the cortex by in vivo electroporation and Cre-mediated DNA recombination. Electroporation at E13.5 transferred DNA to early progenitors that gave rise to neurons of both low and upper layers. Forced expression of a constitutively active form of Notch (caNotch) at E13.5 inhibited progenitors from generating neurons and kept progenitors as proliferating radial glial cells. After subsequent transfection at E15.5 of a Cre expression vector to remove caNotch, double-transfected cells, in which caNotch was excised, migrated into the cortical plate and differentiated into neurons specific to upper layers. Bromodeoxyuridine-labeling experiments showed that the neurons were born after Cre transfection. These results indicate that cortical progenitors that had been temporarily subjected to Notch activation at an early stage generated neurons at later stages, but that the generation of low-layer neurons was skipped. Moreover, the double-transfected cells gave rise to upper-layer neurons, even after their transplantation into the E13.5 brain, indicating that the developmental state of progenitors is not halted by caNotch activity.  相似文献   

16.
The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements in the ventricular zone, to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, actomyosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play critical roles in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration.  相似文献   

17.
The cerebral cortex is composed of a large variety of different neuron types. All cortical neurons, except some interneurons, are born in two proliferative zones, the cortical ventricular (VZ) and subventricular (SVZ) zones. The relative contribution of both proliferative zones to the generation of the diversity of the cortical neurons is not well understood. To further dissect the underlying mechanism, molecular markers specific for the SVZ are required. Towards this end we performed a subtraction of cDNA libraries, generated from E15.5 and E18.5 mouse cerebral cortex. A novel cDNA, Svet1, was cloned which was specifically expressed in the proliferating cells of the SVZ but not the VZ. The VZ is marked by the expression of the Otx1 gene. Later in development, Svet1 and Otx1 were expressed in subsets of cells of upper (II-IV) and deep (V-VI) layers, respectively. In the reeler cortex, where the layers are inverted, Svet1 and Otx1 label precursors of the upper and deeper layers, respectively, in their new location. Interestingly, in the Pax6/small eye mutant, Svet1 activity was abolished in the SVZ and in the upper part of the cortical plate while the Otx1 expression domain remained unchanged. Therefore, using Svet1 and Otx1 as cell-type-specific molecular markers for the upper and deep cortical layers we conclude that the Sey mutation affects predominantly the differentiation of the SVZ cells that fail to migrate into the cortical plate. The abnormality of the SVZ coincides with the absence of upper layer cells in the cortex. Taken together our data suggest that while the specification of deep cortical layers occurs in the ventricular zone, the SVZ is important for the proper specification of upper layers.  相似文献   

18.
We show that alpha3 integrin mutation disrupts distinct aspects of neuronal migration and placement in the cerebral cortex. The preplate develops normally in alpha3 integrin mutant mice. However, time lapse imaging of migrating neurons in embryonic cortical slices indicates retarded radial and tangential migration of neurons, but not ventricular zone-directed migration. Examination of the actin cytoskeleton of alpha3 integrin mutant cortical cells reveals aberrant actin cytoskeletal dynamics at the leading edges. Deficits are also evident in the ability of developing neurons to probe their cellular environment with filopodial and lamellipodial activity. Calbindin or calretinin positive upper layer neurons as well as the deep layer neurons of alpha3 integrin mutant mice expressing EGFP were misplaced. These results suggest that alpha3beta1 integrin deficiency impairs distinct patterns of neuronal migration and placement through dysregulated actin dynamics and defective ability to search and respond to migration modulating cues in the developing cortex.  相似文献   

19.
The radial migration of neuronal progenitor cells is critical for the development of cerebral cortex layers. They go through a critical step transforming from multipolar to bipolar before outward migration. A Disintegrin and Metalloprotease 17 (ADAM17) is a transmembrane protease which can process many substrates involved in cell-cell interaction, including Notch, ligands of EGFR, and some cell adhesion molecules. In this study, we used in utero electroporation to knock down or overexpress ADAM17 at embryonic day 14.5 (E14.5) in neuronal progenitor cells to examine the role of ADAM17 in cortical embryonic neurogenesis. Our results showed that the radial migration of ADAM17-knocked down cells were normal till E16.5 and reached the intermediate zone (IZ). Then most transfected cells stopped migration and stayed at the IZ to inner cortical plate (CP) layer at E18.5, and there was higher percentage of multipolar cells at IZ layer in the ADAM17-knocked down group compared to the cells in control group. Marker staining revealed that those ADAM17-knocked down cells differentiated normally from neural stem cells (NSCs) to neuronal intermediate progenitor cells (nIPCs) but did not differentiate into mature neurons. The migration and multipolar exit defects caused by ADAM17 knockdown could be partially rescued by over-expressing an shRNA resistant ADAM17, while overexpressing ADAM17 alone did not affect the radial migration. Taken together, our results showed for the first time that, ADAM17 is critical in regulating the multipolar-stage exit and radial migration of the nIPCs during telencephalon cortex development in mice.  相似文献   

20.
G E Gray  J R Sanes 《Neuron》1991,6(2):211-225
We used retrovirus-mediated gene transfer to study the migration of clonally related cells in the developing chicken optic tectum. Clonal cohorts initially form radial arrays in the ventricular zone (approximately E5), but eventually divide into three separate migratory streams. In the first migration, a minor population of cells migrates tangentially along axon fascicles in medio-laterally directed files (approximately E6-E7); these eventually differentiate into multipolar efferent cells. After E7, the majority of cells in each clone migrate radially along fascicles of radial glia to form the tectal plate, wherein they differentiate into neurons and astrocytes. Around E9, a set of small cells leaves the radial arrays in superficial layers to form a second tangential migration; at least some of these differentiate into astrocytes. Thus, as the tectum develops, cells derived from a single multipotential precursor migrate along three separate pathways, follow separate guidance cues, and adopt distinct phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号