首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.

Background

Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development. There is mounting evidence to support a role for developmentally regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development.

Results

We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that schizophrenia-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development.

Conclusions

Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0483-2) contains supplementary material, which is available to authorized users.  相似文献   

3.
Klinefelter's syndrome (KS) is the most common sex chromosome abnormality identified in human males. This syndrome is generally associated with infertility. Men with KS may have a 47,XXY or a 46,XY/47,XXY karyotype. Studies carried out in humans and mice suggest that only XY cells are able to enter and complete meiosis. These cells could originate from the XY cells present in mosaic patients or from XXY cells that have lost one X chromosome. In pig, only 3 cases of pure 39,XXY have been reported until now, and no meiotic analysis was carried out. For the first time in pig species we report the analysis of a 38,XY/39,XXY boar and describe the origin of the supplementary X chromosome and the chromosomal constitutions of the germ and Sertoli cells.  相似文献   

4.
Given the tissue-specific nature of epigenetic processes, the assessment of disease-relevant tissue is an important consideration for epigenome-wide association studies (EWAS). Little is known about whether easily accessible tissues, such as whole blood, can be used to address questions about interindividual epigenomic variation in inaccessible tissues, such as the brain. We quantified DNA methylation in matched DNA samples isolated from whole blood and 4 brain regions (prefrontal cortex, entorhinal cortex, superior temporal gyrus, and cerebellum) from 122 individuals. We explored co-variation between tissues and the extent to which methylomic variation in blood is predictive of interindividual variation identified in the brain. For the majority of DNA methylation sites, interindividual variation in whole blood is not a strong predictor of interindividual variation in the brain, although the relationship with cortical regions is stronger than with the cerebellum. Variation at a subset of probes is strongly correlated across tissues, even in instances when the actual level of DNA methylation is significantly different between them. A substantial proportion of this co-variation, however, is likely to result from genetic influences. Our data suggest that for the majority of the genome, a blood-based EWAS for disorders where brain is presumed to be the primary tissue of interest will give limited information relating to underlying pathological processes. These results do not, however, discount the utility of using a blood-based EWAS to identify biomarkers of disease phenotypes manifest in the brain. We have generated a searchable database for the interpretation of data from blood-based EWAS analyses (http://epigenetics.essex.ac.uk/bloodbrain/).  相似文献   

5.

Background

Emerging evidence suggests that DNA methylation plays an expansive role in the central nervous system (CNS). Large-scale whole genome DNA methylation profiling of the normal human brain offers tremendous potential in understanding the role of DNA methylation in brain development and function.

Methodology/Significant Findings

Using methylation-sensitive SNP chip analysis (MSNP), we performed whole genome DNA methylation profiling of the prefrontal, occipital, and temporal regions of cerebral cortex, as well as cerebellum. These data provide an unbiased representation of CpG sites comprising 377,509 CpG dinucleotides within both the genic and intergenic euchromatic region of the genome. Our large-scale genome DNA methylation profiling reveals that the prefrontal, occipital, and temporal regions of the cerebral cortex compared to cerebellum have markedly different DNA methylation signatures, with the cerebral cortex being hypermethylated and cerebellum being hypomethylated. Such differences were observed in distinct genomic regions, including genes involved in CNS function. The MSNP data were validated for a subset of these genes, by performing bisulfite cloning and sequencing and confirming that prefrontal, occipital, and temporal cortices are significantly more methylated as compared to the cerebellum.

Conclusions

These findings are consistent with known developmental differences in nucleosome repeat lengths in cerebral and cerebellar cortices, with cerebrum exhibiting shorter repeat lengths than cerebellum. Our observed differences in DNA methylation profiles in these regions underscores the potential role of DNA methylation in chromatin structure and organization in CNS, reflecting functional specialization within cortical regions.  相似文献   

6.
7.
AIMS: To describe the tall stature and its possible underlying mechanism in a Caucasian girl (age 12 years and 10 months) with 46,XX (28%)/47,XXX (72%) mosaicism and to identify the parental origin of her extra X chromosome. METHODS: The fasting glucose-to-insulin ratio was studied. The karyotypes of the girl and her parents as well as the presence of SHOX copies and the parental origin of her extra X chromosome were assessed. RESULTS: Clinical examination revealed a tall stature and severe acne, and endocrinological/metabolic assessment revealed insulin resistance. Fluorescence in situ hybridization cytogenetic analysis depicted the presence of three SHOX genes in the 47,XXX cell line of the patient. Karyotyping of her parents showed a normal 46,XX karyotype in the mother and 46,XY(93%)/47,XXY(7%) Klinefelter mosaicism in the father. However, DNA analysis unequivocally showed maternal origin of the extra X chromosome of the patient. CONCLUSIONS: This report suggests that SHOX gene triplication may produce a tall stature, even in the presence of preserved ovarian function. X triplication might predispose to insulin resistance and behavioral disorders.  相似文献   

8.
Childhood psychotic symptoms are associated with increased rates of schizophrenia, other psychiatric disorders, and suicide attempts in adulthood; thus, elucidating early risk indicators is crucial to target prevention efforts. There is considerable discordance for psychotic symptoms between monozygotic twins, indicating that child-specific non-genetic factors must be involved. Epigenetic processes may constitute one of these factors and have not yet been investigated in relation to childhood psychotic symptoms. Therefore, this study explored whether differences in DNA methylation at age 10 were associated with monozygotic twin discordance for psychotic symptoms at age 12. The Environmental Risk (E-Risk) Longitudinal Twin Study cohort of 2,232 children (1,116 twin pairs) was assessed for age-12 psychotic symptoms and 24 monozygotic twin pairs discordant for symptoms were identified for methylomic comparison. Children provided buccal samples at ages 5 and 10. DNA was bisulfite modified and DNA methylation was quantified using the Infinium HumanMethylation450 array. Differentially methylated positions (DMPs) associated with psychotic symptoms were subsequently tested in post-mortem prefrontal cortex tissue from adult schizophrenia patients and age-matched controls. Site-specific DNA methylation differences were observed at age 10 between monozygotic twins discordant for age-12 psychotic symptoms. Similar DMPs were not found at age 5. The top-ranked psychosis-associated DMP (cg23933044), located in the promoter of the C5ORF42 gene, was also hypomethylated in post-mortem prefrontal cortex brain tissue from schizophrenia patients compared to unaffected controls. These data tentatively suggest that epigenetic variation in peripheral tissue is associated with childhood psychotic symptoms and may indicate susceptibility to schizophrenia and other mental health problems.  相似文献   

9.
Summary Three males with a 46,XX karyotype are described. In two of them, evidence of a Y-containing line was found. In the first case, 1 of 500 lymphocyte metaphases was 47,XXY. In the second, 1 of 400 oral mucosa cells contained a Y body. The proportion of low-grade XX/XXY mosaics found among XX males now stands at about 17%.  相似文献   

10.
Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.  相似文献   

11.
Different chromosome Y abnormalities in Turner syndrome.   总被引:2,自引:0,他引:2  
A 17-year-old phenotypically female girl was referred for evaluation because of short stature and primary amenorrhea. Cytogenetic analysis showed a mosaic 46,XY/45,X/47,XYY/46,X,idic(Yq)/47,XY,idic(Yq)/48,XXY,idic(Yq)/46,X,t(C;Y) karyotype. Conventional cytogenetic results were supplemented with fluorescence in situ hybridization (FISH) techniques to ensure a better characterization of abnormalities. By using FISH, a supernumerary marker chromosome derived from chromosome Y which could not be detected by conventional cytogenetics was revealed. Furthermore, additional abnormalities and their frequencies were highlighted by the application of DNA probes specific for X and Y chromosomes. Thus, FISH proved useful in determining low frequency cell lines which would need analysis of a large number of good quality metaphase spreads by conventional cytogenetic techniques: it helped in identifying the nature and the origin of unknown markers and rearrangements which have important implication in sexual differentiation and development of gonadal tumours.  相似文献   

12.
13.
Colcemid, a chemical closely related to colchicine, was fed to Drosophila melanogaster females (0.0001 and 0.0005%, respectively). In the F1 the frequency of aneuploid males (XO karyotype) and aneuploid females (either of the XXY or of the XXXY karyotype, with 2 and 3 sets of autosomes, respectively) was significantly higher than in the controls as shown by genetical methods supplemented by cytological tests. A consistent brood pattern effect was observed, possibly but not necessarily reflecting differential stage sensitivity to the action of colcemid. It seems plausible to assume that most of the aneuploid exceptions were produced via colcemid-induced spindle defects leading to lagging of the X-chromosome. Exclusion of the lagging X from the pronucleus (or its precursors) would yield XO males, its inclusion would yield XXY females. Definitely more XO than XXY exceptions were observed.  相似文献   

14.
Ein Fall von testiculärer Feminisierung mit dem Karyotyp 47,XXY   总被引:2,自引:2,他引:0  
Zusammenfassung Ein Fall von testiculärer Feminisierung wird vorgestellt, der den Karyotyp 47,XXY in allen untersuchten Metaphasen aus Blut- und Hautkulturen hat. Ein solcher Karyotyp legt die Frage nahe, inwieweit sich die Gonosomenkontitution XXY mit dem Syndrom der testiculären Feminisierung und weiterhin mit dem bisher bekannten Vererbungsmodus bei der testiculären Feminisierung vereinbaren läßt. Eine Literaturübersicht wird gegeben.
A case of testicular feminization with the karyotype 47, XXY
Summary A case of testicular feminization is described, who has the karyotype 47,XXY in all analysed metaphases from blood and skin cultures. The question is discussed whether the karyotype 47,XXY is compatible with the syndrome of testicular feminization and which conditions are required to allow the hitherto known transmission of testicular feminization in presence of the gonosomes XXY. A review of literature is given.


St. Josefs-Krankenhaus, Moers.  相似文献   

15.

Background

Supernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual’s karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6).

Methods

We investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations.

Results

Several subregional areas, local curvature, and BLDs differed between groups.Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups.

Conclusions

Our results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups.
  相似文献   

16.
Oculo-auriculo-vertebral spectrum in Klinefelter syndrome.   总被引:2,自引:0,他引:2  
We report a boy with classical 47,XXY Klinefelter syndrome (KS) and oculo-auriculo-vertebral spectrum (OAV). Two patients with KS and OAV were reported previously. Also, the combination of bilateral aplasia of the mandibular ramus and condyle and KS has been documented. The present observation supports the view that the cause of hemifacial microsomia appears heterogeneous and that OAV may be part of the spectrum of craniofacial anomalies associated with KS.  相似文献   

17.
Experience‐dependent changes in DNA methylation can exert profound effects on neuronal function and behaviour. A single learning event can induce a variety of DNA modifications within the neuronal genome, some of which may be common to all individuals experiencing the event, whereas others may occur in a subset of individuals. Variations in experience‐induced DNA methylation may subsequently confer increased vulnerability or resilience to the development of neuropsychiatric disorders. However, the detection of experience‐dependent changes in DNA methylation in the brain has been hindered by the interrogation of heterogeneous cell populations, regional differences in epigenetic states and the use of pooled tissue obtained from multiple individuals. Methyl CpG Binding Domain Ultra‐Sequencing (MBD Ultra‐Seq) overcomes current limitations on genome‐wide epigenetic profiling by incorporating fluorescence‐activated cell sorting and sample‐specific barcoding to examine cell‐type‐specific CpG methylation in discrete brain regions of individuals. We demonstrate the value of this method by characterizing differences in 5‐methylcytosine (5mC) in neurons and non‐neurons of the ventromedial prefrontal cortex of individual adult C57BL/6 mice, using as little as 50 ng of genomic DNA per sample. We find that the neuronal methylome is characterized by greater CpG methylation as well as the enrichment of 5mC within intergenic loci. In conclusion, MBD Ultra‐Seq is a robust method for detecting DNA methylation in neurons derived from discrete brain regions of individual animals. This protocol will facilitate the detection of experience‐dependent changes in DNA methylation in a variety of behavioural paradigms and help identify aberrant experience‐induced DNA methylation that may underlie risk and resiliency to neuropsychiatric disease.  相似文献   

18.
Klinefelter’s syndrome is a common sex chromosomal aberration generally characterized by hypergonadotrophic hypogonadism and azoospermia. However, spermatogenesis impairment is variable and severe oligozoospermia can be found in some men, particularly those exhibiting a mosaic karyotype 47,XXY/ 46,XY. New reproductive technologies, such as intracytoplasmic sperm injection (ICSI), allow Klinefelter patients to have a progeny, even those who are azoospermic after testicular sperm recovery. The question therefore arises of whether or not there is a genetic risk for pregnancies from affected fathers. Sperm karyotyping, by in vitro penetration of zona-free hamster eggs or by fluorescence in-situ hybridization (FISH), is a method of choice for measuring aneuploidy rate in spermatozoa of patients carrying gonosomal abnormalities. A theoretical model would predict a high level of 24,XX and/or 24,XY disomic sperm cells in Klinefelter patients if 47,XXY spermatogonia were able to complete meiosis and achieve spermatogenesis. Interestingly, current observations show that the rate of abnormal spermatozoa in these patients is low, around 1–2%, which indicates that only 46,XY spermatogonia can produce mature sperm cells and that oligozoospermic Klinefelter patients probably carry a 47,XXY / 46,XY mosaicism, at least at the testicular level. However, this low but statistically significant level of disomic spermatozoa emphasizes the fact that their spermatogenesis occurs in a compromised environment which could increase the risk of meiotic errors. Therefore, the possible occurrence of autosomal aneuploidies in children born from Klinefelter fathers leads to the following recommendations: a) individual analysis by FISH of the sperm aneuploidy rate in each Klinefelter patient candidate for ICSI; b) proposal of fetal karyotyping after amniocentesis in pregnancies obtained by this technique.  相似文献   

19.
20.
Fragile X syndrome (FXS) results from a CGG-repeat expansion that triggers hypermethylation and silencing of the FMR1 gene. FXS is referred to as the most common form of inherited intellectual disability, yet its true incidence has never been measured directly by large population screening. Here, we developed an inexpensive and high-throughput assay to quantitatively assess FMR1 methylation in DNA isolated from the dried blood spots of 36,124 deidentified newborn males. This assay displays 100% specificity and 100% sensitivity for detecting FMR1 methylation, successfully distinguishing normal males from males with full-mutation FXS. Furthermore, the assay can detect excess FMR1 methylation in 82% of females with full mutations, although the methylation did not correlate with intellectual disability. With amelogenin PCR used for detecting the presence of a Y chromosome, this assay can also detect males with Klinefelter syndrome (KS) (47, XXY). We identified 64 males with FMR1 methylation and, after confirmatory testing, found seven to have full-mutation FXS and 57 to have KS. Because the precise incidence of KS is known, we used our observed KS incidence as a sentinel to assess ascertainment quality and showed that our KS incidence of 1 in 633 newborn males was not significantly different from the literature incidence of 1 in 576 (p = 0.79). The seven FXS males revealed an FXS incidence in males of 1 in 5161 (95% confidence interval of 1 in 10,653–1 in 2500), consistent with some earlier indirect estimates. Given the trials now underway for possible FXS treatments, this method could be used in newborn or infant screening as a way of ensuring early interventions for FXS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号