首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-expressed HIV-1 envelope glycoproteins (gp120 and gp41, called Env) induce autophagy in uninfected CD4 T cells, leading to their apoptosis, a mechanism most likely contributing to immunodeficiency. The presence of CD4 and CXCR4 on target cells is required for this process, but Env-induced autophagy is independent of CD4 signaling. Here we demonstrate that CXCR4-mediated signaling pathways are not directly involved in autophagy and cell death triggering. Indeed, cells stably expressing mutated forms of CXCR4, unable to transduce different Gi-dependent and -independent signals, still undergo autophagy and cell death after coculture with effector cells expressing Env. After gp120 binding to CD4 and CXCR4, the N terminus fusion peptide (FP) of gp41 is inserted into the target membrane, and gp41 adopts a trimeric extended pre-hairpin intermediate conformation, target of HIV fusion inhibitors such as T20 and C34, before formation of a stable six-helix bundle structure and cell-to-cell fusion. Interestingly, Env-mediated autophagy is triggered in both single cells (hemifusion) and syncytia (complete fusion), and prevented by T20 and C34. The gp41 fusion activity is responsible for Env-mediated autophagy since the Val2Glu mutation in the gp41 FP totally blocks this process. On the contrary, deletion of the C-terminal part of gp41 enhances Env-induced autophagy. These results underline the major role of gp41 in inducing autophagy in the uninfected cells and indicate that the entire process leading to HIV entry into target cells through binding of Env to its receptors, CD4 and CXCR4, is responsible for autophagy and death in the uninfected, bystander cells.  相似文献   

2.
The loss of CD4(+) T cells in HIV-1 infections is hypothesized to be caused by apoptosis of bystander cells mediated by cell surface-expressed HIV-1 Env glycoprotein. However, the mechanism by which Env mediates this process remains controversial. Specifically, the role of HIV-1 gp120 binding to CD4 and CXCR4 versus the fusion process mediated by gp41 remains unresolved. Env-induced apoptosis in bystander cells has been shown to be gp41-dependent and correlates with the redistribution of membrane lipids between Env-expressing cells and target cells (hemifusion). Using a rational mutagenesis approach aimed at targeting Env function via the gp41 subunit, we examined the role of HIV gp41 in bystander apoptosis. A mutation in the fusion domain of gp41 (V513E) resulted in a fusion-defective Env that failed to induce apoptosis. A mutation in the gp41 N-terminal helix (G547D) reduced cell fusion capacity and apoptosis; conversely, an Env mutant with a deletion of the gp41 cytoplasmic tail (Ct Del) enhanced both cell-to-cell fusion and apoptosis. Most significantly, an Env mutant containing a substitution in the loop region of gp41 (D589L) mediated transfer of lipids (hemifusion) to bystander cells but was defective in cell-to-cell and to a lesser degree virus-to-cell fusion. This mutant was still able to induce apoptosis in bystander cells. Hence, we have provided the first direct evidence that gp41-mediated hemifusion is both required and sufficient for induction of apoptosis in bystander cells. These results may help to explain the mechanism of HIV-1 Env-induced T cell depletion.  相似文献   

3.
The first step of HIV-1 infection is mediated by the binding of envelope glycoproteins (Env) to CD4 and two major coreceptors, CCR5 or CXCR4. The HIV-1 strains that use CCR5 are involved in primo-infection whereas those HIV-1 strains that use CXCR4 play a major role in the demise of CD4+ T lymphocytes and a rapid progression toward AIDS. Notably, binding of X4 Env expressed on cells to CXCR4 triggers apoptosis of uninfected CD4+ T cells. We now have just demonstrated that, independently of HIV-1 replication, transfected or HIV-1-infected cells that express X4 Env induce autophagy and accumulation of Beclin 1 in uninfected CD4+ T lymphocytes via CXCR4. Moreover, autophagy is a prerequisite to Env-induced apoptosis in uninfected bystander T cells, and CD4+ T cells still undergo an Env-mediated cell death with autophagic features when apoptosis is inhibited. To the best of our knowledge, these findings represent the first example of autophagy triggered through binding of virus envelope proteins to a cellular receptor, without viral replication, leading to apoptosis. Here, we proposed hypotheses about the significance of Env-induced Beclin 1 accumulation in CD4+ T cell death and about the role of autophagy in HIV-1 infected cells depending on the coreceptor involved.  相似文献   

4.
5.
Human immunodeficiency virus (HIV) Env-induced fusion is highly temperature dependent. When effector and target cells were coincubated at 37 degrees C, there was a kinetic delay before fusion commenced. When effector and target cells were coincubated for varied times at 23 degrees C, a temperature that does not permit fusion, a temperature-arrested stage was created. Raising temperature to 37 degrees C from the 23 degrees C intermediate eliminated the kinetic delay. Inhibitors (T22, AMD3100, and Sch-C) that block fusion by binding chemokine receptors were added after creating the intermediate so as to assess the extent of engagement between gp120 and chemokine receptors at that stage. For both CXCR4 and CCR5 as coreceptors, increasingly long times of coincubation at 23 degrees C reduced the efficacy of the coreceptor-binding inhibitors in blocking fusion. This implies that an increasing number of ternary Env/CD4/coreceptor complexes form over time at 23 degrees C. It also shows that ternary complex formation has a lower temperature threshold than the downstream steps that include Env folding into a six-helix bundle; this provides an experimental means to separate coreceptor binding by gp120 from the subsequent refolding of gp41 into a six-helix bundle structure. As the time of cell coincubation at 23 degrees C was prolonged, more cells quickly fused upon the raising of the temperature to 37 degrees C, and the increase quantitatively correlated with the greater percentage of fusion that was resistant to drugs. Therefore the pronounced kinetic delay in HIV Env-induced fusion is caused predominantly by the time needed for ternary complexes to form.  相似文献   

6.
HIV-1 infection causes the depletion of host CD4 T cells through direct and indirect (bystander) mechanisms. Although HIV Env has been implicated in apoptosis of uninfected CD4 T cells via gp120 binding to either CD4 and/or the chemokine receptor 4 (CXCR4), conflicting data exist concerning the molecular mechanisms involved. Using primary human CD4 T cells, we demonstrate that gp120 binding to CD4 T cells activates proapoptotic p38, but does not activate antiapoptotic Akt. Because ligation of the CD4 receptor alone or the CXCR4 receptor alone causes p38 activation and apoptosis, we used the soluble inhibitors, soluble CD4 (sCD4) or AMD3100, to delineate the role of CD4 and CXCR4 receptors, respectively, in gp120-induced p38 activation and death. sCD4 alone augments gp120-induced death, suggesting that CXCR4 signaling is principally responsible. Supporting that model, AMD3100 reduces death caused by gp120 or by gp120/sCD4. Finally, prevention of gp120-CXCR4 interaction with 12G5 Abs blocks p38 activation and apoptosis, whereas inhibition of CD4-gp120 interaction with Leu-3a has no effect. Consequently, we conclude that gp120 interaction with CXCR4 is required for gp120 apoptotic effects in primary human T cells.  相似文献   

7.

Background

HIV-1 can infect and replicate in both CD4 T cells and macrophages. In these cell types, HIV-1 entry is mediated by the binding of envelope glycoproteins (gp120 and gp41, Env) to the receptor CD4 and a coreceptor, principally CCR5 or CXCR4, depending on the viral strain (R5 or X4, respectively). Uninfected CD4 T cells undergo X4 Env-mediated autophagy, leading to their apoptosis, a mechanism now recognized as central to immunodeficiency.

Methodology/Principal Findings

We demonstrate here that autophagy and cell death are also induced in the uninfected CD4 T cells by HIV-1 R5 Env, while autophagy is inhibited in productively X4 or R5-infected CD4 T cells. In contrast, uninfected macrophages, a preserved cell population during HIV-1 infection, do not undergo X4 or R5 Env-mediated autophagy. Autophagosomes, however, are present in macrophages exposed to infectious HIV-1 particles, independently of coreceptor use. Interestingly, we observed two populations of autophagic cells: one highly autophagic and the other weakly autophagic. Surprisingly, viruses could be detected in the weakly autophagic cells but not in the highly autophagic cells. In addition, we show that the triggering of autophagy in macrophages is necessary for viral replication but addition of Bafilomycin A1, which blocks the final stages of autophagy, strongly increases productive infection.

Conclusions/Significance

Taken together, our data suggest that autophagy plays a complex, but essential, role in HIV pathology by regulating both viral replication and the fate of the target cells.  相似文献   

8.
Human immunodeficiency virus (HIV) entry is triggered by interactions between a pair of heptad repeats in the gp41 ectodomain, which convert a prehairpin gp41 trimer into a fusogenic three-hairpin bundle. Here we examined the disposition and antigenic nature of these structures during the HIV-mediated fusion of HeLa cells expressing either HIV(HXB2) envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various lengths of time and then arrested. Fusion intermediates were then examined for reactivity with various monoclonal antibodies (MAbs) against immunogenic cluster I and cluster II epitopes in the gp41 ectodomain. All of these MAbs produced similar staining patterns indicative of reactivity with prehairpin gp41 intermediates or related structures. MAb staining was seen on Env cells only upon exposure to soluble CD4, CD4-positive, coreceptor-negative cells, or stromal cell-derived factor-treated target cells. In the fusion system, the MAbs reacted with the interfaces of attached Env and target cells within 10 min of coculture. MAb reactivity colocalized with the formation of gp120-CD4-coreceptor tricomplexes after longer periods of coculture, although reactivity was absent on cells exhibiting cytoplasmic dye transfer. Notably, the MAbs were unable to inhibit fusion even when allowed to react with soluble-CD4-triggered or temperature-arrested antigens prior to initiation of the fusion process. In comparison, a broadly neutralizing antibody, 2F5, which recognizes gp41 antigens in the HIV envelope spike, was immunoreactive with free Env cells and Env-target cell clusters but not with fused cells. Notably, exposure of the 2F5 epitope required temperature-dependent elements of the HIV envelope structure, as MAb binding occurred only above 19 degrees C. Overall, these results demonstrate that immunogenic epitopes, both neutralizing and nonneutralizing, are accessible on gp41 antigens prior to membrane fusion. The 2F5 epitope appears to depend on temperature-dependent elements on prefusion antigens, whereas cluster I and cluster II epitopes are displayed by transient gp41 structures. Such findings have important implications for HIV vaccine approaches based on gp41 intermediates.  相似文献   

9.
HIV-1 envelope gp120 and gp41 glycoproteins (Env), expressed at the cell surface, induce uninfected CD4 T-cell death, but the molecular mechanisms leading to this demise are still largely unknown. To better understand these events, we analyzed by a proteomic approach the differential protein expression profile of two types of uninfected immune cells after their coculture for 1-3 days with cells that express, or not, Env. First, umbilical cord blood mononuclear cells (UCBMCs) were used to approach the in vivo situation, i.e., blood uninfected naive cells that encounter infected cells. Second, we used the A2.01/CD4.403 T-cell line expressing wild type CXCR4 and a truncated form of CD4 that still undergoes Env-mediated apoptosis, independently of CD4 signaling. After coculture with cells expressing Env, 35 and 39 proteins presenting an altered expression in UCBMCs and the A2.01/CD4.403 T-cell line, respectively, were identified by mass-spectrometry. Whatever the cell type analyzed, the majority of these proteins are involved in degradation processes, redox homeostasis, metabolism and cytoskeleton dynamics, and linked to mitochondrial functions. This study provides new insights into the events that sequentially occur in bystander T lymphocytes after contact with HIV-infected cells and leading, finally, to apoptotic cell death.  相似文献   

10.
The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.  相似文献   

11.
Gallo SA  Puri A  Blumenthal R 《Biochemistry》2001,40(41):12231-12236
The onset of cell fusion mediated by HIV-1 IIIB Env is preceded by a lag phase of 15-20 min. Fusion mediated by the CD4-independent HIV-1 Env 8x, which is capable of interacting directly with CXCR4, proceeds with a greatly reduced lag phase. We probed the intermediate steps during the lag phase in HIV-1 IIIB Env-mediated fusion with Leu3-a, an inhibitor of attachment of gp120 to CD4, AMD3100, an inhibitor of attachment of gp120 to CXCR4, and C34, a synthetic peptide that interferes with the transition of gp41 to the fusion active state. Inhibitions of fusion as a function of time of addition of C34 and of AMD3100 were equivalent, indicating that engagement of gp120 by CXCR4 and formation of the gp41 six-helix bundle follow similar kinetics. The initial steps in fusion mediated by the CD4-independent Env 8x are too rapid for these inhibitors to interfere with. However, when 8x Env-expressing cells were incubated with target cells at 25 degrees C in the presence of AMD3100 or C34, prior to incubation at 37 degrees C, these inhibitors were capable of inhibiting 8x Env-mediated fusion. To further examine engagement of gp120 by CXCR4 and exposure of binding sites for C34, we have reversibly arrested the fusion reaction at 37 degrees C by adding cytochalasin B to the medium. We show that CXCR4 engagement and six-helix bundle formation only occur after the release of the cytochalasin arrest, indicating that a high degree of cooperativity is required to trigger the initial steps in HIV-1 Env-mediated fusion.  相似文献   

12.
Human immunodeficiency virus (HIV) fusion and entry involves sequential interactions between the viral envelope protein, gp120, cell surface CD4, and a G-protein-coupled coreceptor. Each interaction creates an intermediate gp120 structure predicted to display distinct antigenic features, including key functional domains for viral entry. In this study, we examined the disposition of these features during the fusion of HeLa cells expressing either HIV(HXB2) envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various times and then arrested. The cells were then examined for reactivity with antibodies directed against receptor-induced epitopes on gp120. Analyses of cells arrested by cooling to 4( degrees )C revealed that antibodies against the CD4-induced coreceptor-binding domain, i.e., 17b, 48d, and CG10, faintly react with Env cells even in the absence of target cell or soluble CD4 (sCD4) interactions. Such reactivity increased after exposure to sCD4 but remained unchanged during fusion with target cells and was not intensified at the Env-target cell interface. Notably, the antibodies did not react with Env cells when treated with a covalent cross-linker either alone or during fusion with target cells. Immunoreactivity could not be promoted or otherwise altered on either temperature arrested or cross-linked cells by preventing coreceptor interactions or by using a 17b Fab. In comparison, two other gp120-CD4 complex-dependent antibodies against epitopes outside the coreceptor domain, 8F101 and A32, exhibited a different pattern of reactivity. These antibodies reacted with the Env-target cell interface only after 30 min of cocultivation, concurrent with the first visible transfer of cytoplasmic dye from Env to target cells. At later times, the staining surrounded entire syncytia. Such binding was entirely dependent on the formation of gp120-CD4-CXCR4 tricomplexes since staining was absent with SDF-treated or coreceptor-negative target cells. Overall, these studies show that access to the CD4-induced coreceptor-binding domain on gp120 is largely blocked at the fusing cell interface and is unlikely to represent a target for neutralizing antibodies. However, new epitopes are presented on intermediate gp120 structures formed as a result of coreceptor interactions. Such findings have important implications for HIV vaccine approaches based on conformational alterations in envelope structures.  相似文献   

13.
We generated Chinese hamster ovary cell lines that stably express wild-type, secreted, and glycosylphosphatidylinositol (GPI)-anchored envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1). The cells expressing wild-type Env (WT cells) express both the precursor gp160 and the mature gp120/gp41 and readily form large syncytia when cocultivated with CD4+ human cells. The cells expressing secreted Env (SEC cells) release 140-kDa precursor and mature 120-kDa envelope glycoproteins into the supernatants. The cells expressing GPI-anchored Env (PI cells) express both 140-kDa precursor and mature gp120/gp41 envelope glycoproteins, which can be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). Both the secreted and PI-PLC-released envelope glycoproteins form oligomers that can be detected on nonreducing sodium dodecyl sulfate-polyacrylamide gels. In contrast to the WT cells, the SEC and PI cells do not form syncytia when cocultivated with CD4+ human cells. The availability of cells producing water-soluble oligomers of HIV-1 Env should facilitate studies of envelope glycoprotein structure and function. The WT cells, which readily induce syncytia with CD4+ cells, provide a convenient system for assessing potential fusion inhibitors and for studying the fusion mechanism of the HIV Env glycoprotein.  相似文献   

14.
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.  相似文献   

15.
HIV-1 contact with target cells triggers F-actin rearrangements that are essential for several steps of the viral cycle. Successful HIV entry into CD4+ T cells requires actin reorganization induced by the interaction of the cellular receptor/co-receptor complex CD4/CXCR4 with the viral envelope complex gp120/gp41 (Env). In this report, we analyze the role of the actin modulator drebrin in HIV-1 viral infection and cell to cell fusion. We show that drebrin associates with CXCR4 before and during HIV infection. Drebrin is actively recruited toward cell-virus and Env-driven cell to cell contacts. After viral internalization, drebrin clustering is retained in a fraction of the internalized particles. Through a combination of RNAi-based inhibition of endogenous drebrin and GFP-tagged expression of wild-type and mutant forms, we establish drebrin as a negative regulator of HIV entry and HIV-mediated cell fusion. Down-regulation of drebrin expression promotes HIV-1 entry, decreases F-actin polymerization, and enhances profilin local accumulation in response to HIV-1. These data underscore the negative role of drebrin in HIV infection by modulating viral entry, mainly through the control of actin cytoskeleton polymerization in response to HIV-1.  相似文献   

16.
Retrocyclin-1, a -defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 microm) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.  相似文献   

17.
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.  相似文献   

18.
We devised an experimental system to examine sequential events by which the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) interacts with CD4 and coreceptor to induce membrane fusion. Recombinant soluble CD4 (sCD4) activated fusion between effector cells expressing Env and target cells expressing coreceptor (CCR5 or CXCR4) but lacking CD4. sCD4-activated fusion was dose dependent, occurred comparably with two- and four-domain proteins, and demonstrated Env-coreceptor specificities parallel to those reported in conventional fusion and infectivity systems. Fusion activation occurred upon sCD4 preincubation and washing of the Env-expressing effector cells but not the coreceptor-bearing target cells, thereby demonstrating that sCD4 exerts its effects by acting on Env. These findings provide direct functional evidence for a sequential two-step model of Env-receptor interactions, whereby gp120 binds first to CD4 and becomes activated for subsequent functional interaction with coreceptor, leading to membrane fusion. We used the sCD4-activated system to explore neutralization by the anti-gp120 human monoclonal antibodies 17b and 48d. These antibodies reportedly bind conserved CD4-induced epitopes involved in coreceptor interactions but neutralize HIV-1 infection only weakly. We found that 17b and 48d had minimal effects in the standard cell fusion system using target cells expressing both CD4 and coreceptor but potently blocked sCD4-activated fusion with target cells expressing coreceptor alone. Both antibodies strongly inhibited sCD4-activated fusion by Envs from genetically diverse HIV-1 isolates. Thus, the sCD4-activated system reveals conserved Env-blocking epitopes that are masked in native Env and hence not readily detected by conventional systems.  相似文献   

19.
A mutant human immunodeficiency virus (HIV) envelope protein (Env) with an engineered disulfide bond between the gp120 and gp41 subunits (SOS-Env) was expressed on cell surfaces. With the disulfide bond intact, these cells did not fuse to target cells expressing CD4 and CCR5, but the fusion process did advance to an intermediate state: cleaving the disulfide bond with a reducing agent after but not before binding to target cells allowed fusion to occur. Through the use of an antibody directed against CCR5, it was found that at the intermediate stage, SOS-Env had associated with coreceptors. Reducing the disulfide bond after this intermediate had been reached resulted in hemifusion at low temperature and fusion at physiological temperature. The addition of C34 or N36, peptides that prevent six-helix bundle formation, at the hemifused state blocked the fusion that would have resulted after raising the temperature. Thus, Env has not yet folded into six-helix bundles after hemifusion has been achieved. Because SOS-Env binds CCR5, it is suggested that the conformational changes in wild-type Env that result from this binding cause disengagement of gp120 from gp41 in the region of the engineered bond. It is proposed that this disengagement is the event that directly frees gp41 to undergo the conformational changes that lead to fusion. The intermediate state achieved prior to reduction of the disulfide bond was stable. The capture of this configuration of Env could yield a suitable antigen for vaccine development, and it may also be a target for pharmacological intervention against HIV-1 entry.  相似文献   

20.
The human immunodeficiency virus (HIV) envelope glycoprotein forms trimers on the virion surface, with each monomer consisting of two subunits, gp120 and gp41. The gp120 envelope component binds to CD4 on target cells and undergoes conformational changes that allow gp120 to interact with certain G-protein-coupled receptors (GPCRs) on the same target membranes. The GPCRs that function as HIV coreceptors were found to be chemokine receptors. The primary coreceptors are CCR5 and CXCR4, but several other chemokine receptors were identified as "minor coreceptors", indicating their ability support entry of some HIV strains in tissue cultures. Formation of the tri-molecular complexes stabilizes virus binding and triggers a series of conformational changes in gp41 that facilitate membrane fusion and viral cell entry. Concerted efforts are underway to decipher the specific interactions between gp120/CD4, gp120/coreceptors, and their contributions to the subsequent membrane fusion process. It is hoped that some of the transient conformational intermediates in gp120 and gp41 would serve as targets for entry inhibitors. In addition, the CD4 and coreceptors are primary targets for several classes of inhibitors currently under testing. Our review summarizes the current knowledge on the interactions of HIV gp120 with its receptor and coreceptors, and the important properties of the chemokine receptors and their regulation in primary target cells. We also summarize the classes of coreceptor inhibitors under development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号