首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Friel CT  Howard J 《The EMBO journal》2011,30(19):3928-3939
Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-limiting step for ATP turnover by MCAK; unpolymerized tubulin and microtubules accelerate this step. Further, microtubule ends fully activate the ATPase by accelerating the exchange of ADP for ATP. This tuning of the cycle adapts MCAK for its depolymerization activity: lattice-stimulated ATP cleavage drives MCAK into a weakly bound nucleotide state that reaches microtubule ends by diffusion, and end-specific acceleration of nucleotide exchange drives MCAK into a strongly bound state that promotes depolymerization. This altered cycle accounts well for the different mechanical behaviour of this kinesin, which depolymerizes microtubules from their ends, compared to translocating kinesins that walk along microtubules. Thus, the kinesin motor domain is a nucleotide-dependent engine that can be differentially tuned for transport or depolymerization functions.  相似文献   

2.
Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic spindle, where it limits the rate at which faster motors can move microtubules. In neurons, experimental suppression of kinesin-5 causes the axon to grow faster by increasing the mobility of microtubules in the axonal shaft and the invasion of microtubules into the growth cone. Does kinesin-5 act differently in dendrites, given that they have a population of minus end–distal microtubules not present in axons? Using rodent primary neurons in culture, we found that inhibition of kinesin-5 during various windows of time produces changes in dendritic morphology and microtubule organization. Specifically, dendrites became shorter and thinner and contained a greater proportion of minus end–distal microtubules, suggesting that kinesin-5 acting normally restrains the number of minus end–distal microtubules that are transported into dendrites. Additional data indicate that, in neurons, CDK5 is the kinase responsible for phosphorylating kinesin-5 at Thr-926, which is important for kinesin-5 to associate with microtubules. We also found that kinesin-5 associates preferentially with microtubules rich in tyrosinated tubulin. This is consistent with an observed accumulation of kinesin-5 on dendritic microtubules, as they are known to be less detyrosinated than axonal microtubules.  相似文献   

3.
An expanding collection of proteins localises to microtubule ends to regulate cytoskeletal dynamics and architecture by unknown molecular mechanisms. Electron microscopy is invaluable for studying microtubule structure, but because microtubule ends are heterogeneous, their structures are difficult to determine. We therefore investigated whether tubulin oligomers induced by the drug dolastatin could mimic microtubule ends. The microtubule end-dependent ATPase of kinesin-13 motors is coupled to microtubule depolymerisation. Significantly, kinesin-13 motor ATPase activity is stimulated by dolastatin-tubulin oligomers, suggesting, first, that these oligomers share properties with microtubule ends and, second, that the physical presence of an end is less important than terminal tubulin flexibility for microtubule end recognition by the kinesin-13 motor. Using electron microscopy, we visualised the kinesin-13 motor-dolastatin-tubulin oligomer interaction in nucleotide states mimicking steps in the ATPase cycle. This enabled us to detect conformational changes that the motor undergoes during depolymerisation. Our data suggest that such tubulin oligomers can be used to examine other microtubule end-binding proteins.  相似文献   

4.
The kinesin-13 family of microtubule depolymerases is a major regulator of microtubule dynamics. RNA interference-induced knockdown studies have highlighted their importance in many cell division processes including spindle assembly and chromosome segregation. Since microtubule turnovers and most mitotic events are relatively rapid (in minutes or seconds), developing tools that offer faster control over protein functions is therefore essential to more effectively interrogate kinesin-13 activities in living cells. Here, we report the identification and characterization of a selective allosteric kinesin-13 inhibitor, DHTP. Using high resolution microscopy, we show that DHTP is cell permeable and can modulate microtubule dynamics in cells.  相似文献   

5.
《Current biology : CB》2022,32(11):2416-2429.e6
  1. Download : Download high-res image (225KB)
  2. Download : Download full-size image
  相似文献   

6.
Chromosome segregation relies on the dynamic properties of spindle microtubules (MTs). Poleward MT flux contributes to spindle dynamics through the disassembly of MT minus ends at spindle poles coupled to the continuous poleward transport of spindle MTs. Despite being conserved in metazoan cells, the function of flux remains controversial because flux rates differ widely in different cell types. In meiotic systems, the rate of flux nearly matches that of chromosome movement, but in mitotic systems, flux is significantly slower than chromosome movement. Here, we show that spindles in human mitotic cells depleted of the kinesin-13 proteins Kif2a and MCAK lack detectable flux and that such cells frequently fail to segregate all chromosomes appropriately at anaphase. Elimination of flux reduces poleward chromosome velocity approximately 20%, but does not hinder bipolar spindle assembly, chromosome alignment, or mitotic progression. Thus, mitosis proceeds efficiently in human cells lacking detectable poleward MT flux. These data demonstrate that in human cultured cells, kinetochores are sufficient to effectively power chromosome movement, leading us to speculate that flux is maintained in these cells to fulfill other functional roles such as error correction or kinetochore regulation.  相似文献   

7.
Paclitaxel and docetaxel are potent anti-microtubule and antimitotic agents that induce apoptosis in bone marrow-derived cells and epithelial cells. This study examined apoptosis induced by anti-microtubule agents in the neuroblastoma SK-N-SH cell line with a special focus on tau protein which is one of the main Microtubule-Associated- Proteins (MAPs) in neuronal cells. In time, treatment with 1 M paclitaxel successively induced formation of bundles, then pseudo-asters concomitantly with mitotic block and phosphorylation of bcl-2 (48 h), then phosphorylation of tau and externalization of phosphatidylserine at the early phase of apoptosis (72 h) and finally DNA fragmentation (96 h). Similar results were obtained with 0.5 M vinorelbine. Paclitaxel induced a lower increase in tau phosphorylation in differentiated SK-N-SH/RA+ cells which are less sensitive to apoptosis. Moreover, doxorubicin whose mechanism of action is independent of microtubules also induced immunostaining of tau at 72 h treatment. In conclusion, our results on neuroblastoma cells show that overexpression of hyperphosphorylated tau is involved in the apoptotic process induced by anti-microtubule agents and may be extended to others cytostatic drugs. Thus, tau protein may play a role in the cellular events observed in neuroblastoma cells undergoing apoptosis.  相似文献   

8.
The human genome has three unique genes coding for kinesin-13 proteins called Kif2a, Kif2b, and MCAK (Kif2c). Kif2a and MCAK have documented roles in mitosis, but the function of Kif2b has not been defined. Here, we show that Kif2b is expressed at very low levels in cultured cells and that GFP-Kif2b localizes predominately to centrosomes and midbodies, but also to spindle microtubules and transiently to kinetochores. Kif2b-deficient cells assemble monopolar or disorganized spindles. Chromosomes in Kif2b-deficient cells show typical kinetochore-microtubule attachments, but the velocity of movement is reduced approximately 80% compared with control cells. Some Kif2b-deficient cells attempt anaphase, but the cleavage furrow regresses and cytokinesis fails. Like Kif2a-deficient cells, bipolar spindle assembly can be restored to Kif2b-deficient cells by simultaneous deficiency of MCAK or Nuf2 or treatment with low doses of nocodazole. However, Kif2b-deficient cells are unique in that they assemble bipolar spindles when the pole focusing activities of NuMA and HSET are perturbed. These data demonstrate that Kif2b function is required for spindle assembly and chromosome movement and that the microtubule depolymerase activities of Kif2a, Kif2b, and MCAK fulfill distinct functions during mitosis in human cells.  相似文献   

9.
We previously reported that undifferentiated colonic cancer HT-29 cells, unlike the differentiated ones, exhibit unusual organelle distributions and atypical vesicle trafficking patterns, which are microtubule-independent and microfilamentdependent. In the present study, we have analyzed the microtubule network in both phenotypes, using confocal microscopy, and determined the expression levels of some rnicrotubule-associated proteins by quantitative imrnunoblotting. Differentiated cells exhibited the microtubular organization of polarized epithelial cells. Non-polarized undifferentiated cells presented an atypical microtubule organization as microtubules were localized mainly at the cell ‘top’. Immunoblot analysis indicated the absence or sow content of several structural and motor microtubule-associated proteins in undifferentiated cells, compared to differentiated cells. This may explain in part their atypical microtubular organization. This study agrees with a crucial role for microfilaments in the intracellular organization of undifferentiated HT-29 cancer cells, while differentiated HT-29 cells exhibit intracellular organization similar to that of normal enterocytic cells, although they are also tumoral.  相似文献   

10.
Although microtubules are known to be essential for chromosome segregation during cell division, they also play important roles in the regulation and function of cell polarity. Cell polarization is fundamental to appropriate tissue patterning and the regulation of cellular diversity during animal development. In polarized cells, microtubules are often organized asymmetrically along the polarity axis. Recent studies show that such asymmetry in microtubule organization is important to connect a cell's polarization with its polarized functions. In some cases, asymmetrically organized microtubule arrays themselves induce cell polarity. Here we present an overview of the mechanisms and functions of asymmetric microtubule organization and discuss the possible role of microtubule asymmetry in the symmetry-breaking that leads to cell polarization.  相似文献   

11.
Microtubule-associated proteins (MAPs) serve a wide variety of functions, from constructing and maintaining the microtubule cytoskeleton to using this cytoskeleton to transport cargo and to tether molecules that are involved in numerous cellular processes. Throughout the cell cycle, distinct microtubule arrays carry out specific roles in cytokinesis, karyokinesis, and cell expansion. Recent findings have shed new light on the importance of MAPs in controlling microtubule growth dynamics as well as in cross-linking microtubules to facilitate the formation and function of these cytoskeletal arrays.  相似文献   

12.
Aberrant microtubule organization has been recently recorded in dividing root cells of fra2 and lue1 p60-katanin Arabidopsis thaliana mutants. Here, we report similar defects in the bot1 and ktn1-2 mutants of the same plant, proposing that they constitute a consistent phenotype of p60-katanin mutants. In addition, we show that the Targeting Protein for Xklp2 (TPX2) protein co-localizes with microtubules on the surface of prophase nuclei of the mutants, probably participating in multipolar spindle assembly. As microtubule organization defects are not observed in metaphase/anaphase spindles and initiating phragmoplasts, we also discuss the putative association of the observed aberrations with the nuclear envelope and we emphasize on the mechanism of bipolar metaphase spindle organization in the mutants. It seems that chromosome-mediated spindle assembly, probably minimally dependent on microtubule severing by p60-katanin, dominates after nuclear envelope breakdown, restoring bipolarity.  相似文献   

13.
Continuous poleward movement of tubulin is a hallmark of metaphase spindle dynamics in higher eukaryotic cells and is essential for stable spindle architecture and reliable chromosome segregation. We use quantitative fluorescent speckle microscopy to map with high resolution the spatial organization of microtubule flux in Xenopus laevis egg extract meiotic spindles. We find that the flux velocity decreases near spindle poles by ~20%. The regional variation is independent of functional kinetochores and centrosomes and is suppressed by inhibition of dynein/dynactin, kinesin-5, or both. Statistical analysis reveals that tubulin flows in two distinct velocity modes. We propose an association of these modes with two architecturally distinct yet spatially overlapping and dynamically cross-linked arrays of microtubules: focused polar microtubule arrays of a uniform polarity and slower flux velocities are interconnected by a dense barrel-like microtubule array of antiparallel polarities and faster flux velocities.  相似文献   

14.
The kinesin-8 family of microtubule motors plays?a critical role in microtubule length control in cells. These motors have complex effects on microtubule dynamics: they destabilize growing microtubules yet stabilize shrinking microtubules. The budding yeast kinesin-8, Kip3, accumulates on plus ends of growing but not shrinking microtubules. Here we identify an essential role of the tail domain of Kip3 in mediating both its destabilizing and its stabilizing activities. The Kip3 tail promotes Kip3's accumulation at the plus ends and facilitates the destabilizing effect of Kip3. However, the Kip3 tail also inhibits microtubule shrinkage and is required for promoting microtubule rescue by Kip3. These effects of the tail domain are likely to be mediated by the tubulin- and microtubule-binding activities that we describe. We propose a concentration-dependent model for the coordination of the destabilizing and stabilizing activities of Kip3 and discuss its relevance to cellular microtubule organization.  相似文献   

15.
Summary The effects of nocodazole and brefeldin A (BFA) on the growth of dikaryotic hyphae inSchizophyllum commune corresponded with the development of abnormal structures in the apical region of treated hyphae. Microtubules (MTs) were totally depolymerized after 1 h nocodazole treatment, which correlated with strong branch formation in the apical cells. One reason for branching could be the shift in the position of apical vesicles from the center to the side of the tip, observed in some nocodazole-treated hyphae. After 2 h growth in the presence of nocodazole the apical cells had malformed or swollen tips, or tips of normal shape but containing only a few apical vesicles. After 0.5 h treatment with BFA, almost all the leading hyphae had swollen apical parts in which the endoplasmic reticulum (ER) formed an interconnected network and perturbed Golgi particles were found. The orientation of MTs in the BFA-treated hyphae often followed that of the interconnected ER network, which suggested an association between MTs and ER. The results of the experiments with nocodazole suggest that, in filamentous homobasidiomycetes the subtle organization of cytoplasm necessary for the polar growth at the apex is maintained only in the presence of an intact MT cytoskeleton. The BFA experiments indicated that the secretion pathway inS. commune is sensitive to BFA. In addition rapid change in apical morphology in the BFA-treated hyphae emphasizes the importance of correct orientation of components of the secretory pathway for normal apical growth to continue.Abbreviations BFA brefeldin A - EM electron microscopy - ER endoplasmic reticulum - IIF indirect immunofluorescence - MBC methylbenzimidazole-2-ylcarbamate - MT microtubule - MVB multivesicular body - RER rough endoplasmic reticulum  相似文献   

16.
The effects of aluminium (Al) on dividing root-tip cells of Triticum turgidum were investigated with tubulin immunolabelling and electron microscopy. Aluminium affects the mechanisms controlling the organization of microtubule (MT) cytoskeleton, as well as tubulin polymerization, and induces the following aberrations in mitotic cells. (1) It delays the MT disassembly during mitosis, resulting in the persistence of preprophase MT bands in the late prophase cells, the presence of prophase spindles in prometaphase cells, and a disturbance in the shortening of kinetochore MT bundles in anaphase cells. (2) It interferes with the self-organization process of MTs into bipolar systems, inhibiting the formation of prophase and metaphase spindles. (3) Aluminium induces the formation of atypical MT arrays, which in the immunofluorescent specimens appear as ring-like tubulin aggregations in the cortical cytoplasm of the preprophase/prophase cells and as endoplasmic tubulin bundles in prophase and metaphase/anaphase cells; abnormal preprophase MT bands are assembled, consisting of atypical cortical and endoplasmic MT bundles, the latter clearly lining the nuclear envelope on the preprophase MT band plane. (4) It disorders the chromosome movements carried out by the mitotic spindle. In addition, after prolonged Al treatments chromatin condensation is inhibited. The outcome is greatly disturbed organization and function of the mitotic apparatus, as well as inhibition of cells from entering mitosis. This study shows that the MT cytoskeleton is a target site of Al toxicity in mitotic root-tip cells of T. turgidum . The possible mechanisms by which Al exerts its toxicity on MT organization and function are discussed.  相似文献   

17.
The kinesin-3 family (KIF) is one of the largest among the kinesin superfamily and an important driver of a variety of cellular transport events. Whereas all kinesins contain the highly conserved kinesin motor domain, different families have evolved unique motor features that enable different mechanical and functional outputs. A defining feature of kinesin-3 motors is the presence of a positively charged insert, the K-loop, in loop 12 of their motor domains. However, the mechanical and functional output of the K-loop with respect to processive motility of dimeric kinesin-3 motors is unknown. We find that, surprisingly, the K-loop plays no role in generating the superprocessive motion of dimeric kinesin-3 motors (KIF1, KIF13, and KIF16). Instead, we find that the K-loop provides kinesin-3 motors with a high microtubule affinity in the motor''s ADP-bound state, a state that for other kinesins binds only weakly to the microtubule surface. A high microtubule affinity results in a high landing rate of processive kinesin-3 motors on the microtubule surface. We propose that the family-specific K-loop contributes to efficient kinesin-3 cargo transport by enhancing the initial interaction of dimeric motors with the microtubule track.  相似文献   

18.
19.
When murine cytotoxic T lymphocytes (CTL) are heated at 42 degrees C for 30 min their ability to lyse their target cells (TC) is severely impaired. When the CTL are allowed to recover at 37 degrees C, a partial recovery of cytolytic activity that peaks within 6 h is observed. A dye exclusion assay demonstrated that such a heat shock does not affect the viability of the CTL and direct microscopic observations established that their ability to bind to TC is not impaired. Therefore, the step or steps inhibited by hyperthermia are subsequent to TC recognition and binding. Kupfer et al. ((1983) Proc. Natl. Acad. Sci. USA 80, 7224-7228) demonstrated that upon binding to an appropriate TC, a rapid orientation of the Golgi apparatus and the microtubule organizing center (MTOC) occurred within the CTL so that the two organelles face the TC. This orientation is a prerequisite for efficient TC lysis. We have shown by immunofluorescence and confocal microscopy, using a monoclonal antibody to tubulin and a rabbit autoimmune serum that binds a centriole-associated protein, that the organization of the MTOC-microtubule array is disrupted by hyperthermia. EM suggests that this disorganization of the microtubules may result from an aggregation of the pericentriolar material. The recovery of cytolytic activity is coincident with the reorganization of the microtubules about the MTOC. These findings suggest that the initial inhibitory effect of hyperthermia on CTL function results from the disruption of microtubule organization.  相似文献   

20.
Summary To examine whether preprophase microtubule band (PPB) organization occurs by rearrangement of pre-existing, or by assembly of new microtubules (Mts), we treated root cells ofTriticum turgidum with taxol, which stabilizes pre-existing Mts by slowing their depolymerization. With taxol early preprophase cells failed to form a normal PPB and PPB narrowing was prevented in cells that had already formed a wide one. The PPB became persistent in prometaphase cells and the formation of multipolar prophase-prometaphase spindles was induced. These data favour the suggestion that PPB formation and narrowing, as well as prophase spindle development, are dynamic processes depending on continuous Mt assembly at the PPB site and in the perinuclear cytoplasm.Abbreviations Mt microtubule - MTOC microtubule organizing centre - PPB preprophase microtubule band - DMSO dimethyl sulfoxide  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号