首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibacterial autophagy is understood to be a key cellular immune response to invading microbes. However, the mechanism(s) by which bacteria are selected as targets of autophagy remain unclear. We recently identified diacylglycerol as a novel signaling molecule that targets bacteria to the autophagy pathway, and show that it acts via protein kinase C activation. We also found that Pkc1 is required for autophagy in yeast, indicating that this kinase plays a conserved role in autophagy regulation.Key words: bacteria, Salmonella, innate immunity, adaptor, lipid second messenger, diacylglycerol, ubiquitin, NDP52, p62, SQSTM1The mechanism by which bacteria and other subcellular targets are identified and degraded by the autophagy pathway is an area of intense research. Ubiquitin has been recently found to act as an essential signal required for the autophagy of bacteria and proteins. We have previously observed ubiquitin on autophagy-targeted Salmonella enterica serovar Typhimurium (S. Typhimurium) but were surprised to see that only 50% of these bacteria were positive for ubiquitin. This indicated the possibility that an alternate signal was required for efficient autophagic targeting of the nonubiquitinated population of these bacteria.We initially performed a screen quantifying the colocalization of different lipid second messengers (diacylglycerol (DAG), PtdIns(3)P, PtdIns(4,5)P2, PtdIns(3,4) P2, and PtdIns(3,4,5)P3) with autophagytargeted (i.e., LC3+) S. Typhimurium. We observed that DAG preferentially localizes with LC3+ bacteria. A kinetic analysis revealed that maximal DAG colocalization with bacteria (45 min post-infection) precedes maximal autophagy of the bacteria (60 min post-infection). Using pharmacological agents, siRNA and dominant negative constructs we were able to determine that DAG localization to the bacteria requires the action of phospholipase D (PLD; phosphatidylcholine to phosphatidic acid conversion) and phosphatidic acid phosphatase (PAP; phosphatidic acid to DAG conversion). We observed that inhibition of these pathways significantly reduces DAG localization to bacteria as well as concomitant autophagy of the bacteria, indicating a role for this lipid second messenger in the regulation of this process.Having determined that DAG is necessary for autophagy of bacteria we subsequently wanted to identify the effector through which it was signaling. Conventional and novel isoforms of the protein kinase C (PKC) family contain DAG-binding C1 domains. Accordingly, we targeted PKC isoforms using pharmacological agents, siRNA and knockout cell lines and were able to determine that DAG is signaling through the δ isoform of PKC. Inhibition of this serine/threonine kinase results in significant inhibition of antibacterial autophagy. Furthermore, bacterial replication in PKCδ knockout mouse embryonic fibroblasts is significantly higher compared to control fibroblasts, consistent with previous observations demonstrating that autophagy impairs intracellular replication of S. Typhimurium (Birmingham et al. 2006).We addressed the possibility that DAG and ubiquitin are functioning in a cooperative manner to target Salmonella for degradation by autophagy. We simultaneously inhibited both pathways using siRNA or pharmacological agents and observed additive inhibitory effects on autophagy of the bacteria. While this is indicative of two independent pathways, we cannot discount the possibility that there is still cooperation between the two pathways, especially as we did observe a small population of bacteria that were positive for both DAG and ubiquitin (Fig. 1). There are also a number of technical limitations in the methods we used, such as detection levels of the probes and antibodies that warrant caution in concluding that the two pathways are completely independent. Nonetheless, our studies clearly demonstrate a role for both DAG (Shahnazari et al. 2010) and ubiquitin (Zheng et al. 2009) in autophagy of S. Typhimurium. Future studies are required to further examine how these signals contribute to regulation of antibacterial autophagy.Open in a separate windowFigure 1Autophagic targeting of Salmonella Typhimurium. Invading S. Typhimurium can be targeted to the autophagy pathway by two independent signaling mechanisms. The first requires ubiquitin and the autophagy adaptors p62 and NDP52. The second requires DAG generation and PKCδ function. DAG generation on the SCV may occur through interaction of the SCV with DAG-positive endocytic vesicles (pathway 1) or through direct DAG production on the SCV (pathway 2). SCV, Salmonella-containing vacuole; PA, phosphatidic acid; DAG, diacylglycerol; PAP, phosphatidic acid phosphatase; PKCδ, protein kinase C delta; Ub, ubiquitin.Having characterized this pathway in antibacterial autophagy we were interested in determining whether these components were required for general autophagy. We therefore tested whether DAG localizes with rapamycin-induced autophagosomes. We observed DAG on these compartments and also found a requirement for PAP and PKCδ in this process. Other PKC isoforms are involved in alternate types of autophagy including ER stress-induced autophagy (Sakaki et al. 2008) as well as hypoxia-induced autophagy (Chen et al. 2009). As a result, we were interested in determining whether PKC function in autophagy was evolutionarily conserved. We therefore tested a role for the yeast ortholog, Pkc1, in this process and observed that it is required for starvation-induced autophagy in Saccharomyces cerevisiae.Having identified and characterized a novel signal and effector for antibacterial autophagy, further work still remains to be done in order to obtain a complete picture of this process. This includes additional study of the mechanism by which DAG is generated and the subcellular localization of PLD and PAP during this process. It is possible that DAG+ endocytic vesicles fuse with the Salmonella-containing vacuole (SCV) coating this compartment with DAG (pathway 1, see Fig. 1). It is also possible that both PLD and PAP function directly on the SCV, converting phosphatidylcholine to DAG via the phosphatidic acid intermediate (pathway 2, Fig. 1).More work also needs to be done to dissect DAG and ubiquitin signaling contributions to this pathway. Questions to be answered include the identification of the ubiquitinated protein(s) on the SCV, which may be host or bacterial proteins. Additionally, while we know that DAG is present on the SCV we do not yet know the signal that induces its generation. One intriguing possibility is that DAG generation occurs in response to bacterial-induced damage to the SCV during invasion. To date, PKC has been implicated in at least three different types of autophagy, and the possibility exists that other PKC isoforms (DAG responsive or not) are also involved in this process.  相似文献   

2.
Comment on: Wu, et al. Aging 2009; 1:425-37.  相似文献   

3.
《Autophagy》2013,9(5):634-641
Autophagy is a cellular degradation process with an increasingly recognised importance in many biological pathways such as nutrient sensing, stress responses and development. We present a straightforward assay for autophagy which combines the sensitivity of the EGFP-LC3 reporter protein with the throughput capacity and quantitative power of flow cytometry. Because saponin extraction is specific for the non-autophagosome associated EGFP-LC3-I form of the protein, flow cytometry can be used to measure total fluorescence of saponin extracted HOS-EGFP-LC3 cells as a measure of the levels of autophagosome associated EGFP-LC3-II. Combined with inhibitors of degradation, we have adapted this assay to differentiate between constitutive and induced autophagy and to quantify the changes in flux of the system. Moreover, using direct antibody staining for the endogenous LC3 protein, we have extended this assay to the detection of autophagosome formation in non-transfected cells.  相似文献   

4.
《Autophagy》2013,9(3):334-335
Autophagy has long been viewed as a process to remove long-lived or misfolded protein aggregates and aging and damaged organelles. Our study identified a previously unknown function of autophagy in suppression of Wnt signaling. A signaling protein, Dishevelled (Dvl), can be degraded via the autophagy pathway upon starvation. In this selective degradation, p62/sequestosome-1 binds to ubiquitinated Dvl proteins and promotes Dvl aggregation. Intriguingly, LC3 can also directly interact with Dvl. The studies on the mechanism for autophagic clearance of Dishevelled led to several interesting findings.  相似文献   

5.
《Autophagy》2013,9(3):260-265
In recent years, the process of selective autophagy has received much attention with respect to the clearance of protein aggregates, damaged mitochondria, and bacteria. However, until recently, there have been virtually no studies on the selective autophagy of viruses, although they are perhaps one of the most ubiquitous unwanted constituents in human cells. Recently, we have shown that the ability of neuronal Atg5 to protect against lethal Sindbis virus central nervous system (CNS) infection in mice is associated with impaired viral capsid clearance, increased p62 accumulation, and increased neuronal cell death. In vitro, we showed that p62 interacts with the Sindbis capsid protein and targets it for degradation in autophagosomes. Herein, we review these findings and broadly speculate about potential roles of selective viral autophagy in the regulation of host immunity and viral pathogenesis.  相似文献   

6.
Autophagy is a major intracellular pathway for degradation and recycling of long-lived proteins and cytoplasmic organelles that plays an essential role in maintenance of homeostasis in response to starvation and other cellular stresses. Autophagy is also important for a variety of other processes including restriction of intracellular pathogen replication. Our understanding of the fascinating relationship between viruses and the autophagy machinery is still in its infancy but it is clear that autophagy is a newly recognized facet of innate and adaptive immunity against viral infection. Although the autophagy pathway is emerging as a component of host defense, certain viruses have developed strategies to counteract these antiviral mechanisms, and others appear to have co-opted the autophagy machinery as proviral host factors favoring viral replication. The complex interplay between autophagy and viral infection will be discussed in this review.  相似文献   

7.
8.
Macroautophagy, referred hereafter to as autophagy is an evolutionary conserved catabolic process for the degradation and recycling of macromolecules, bulk cytoplasm and dammaged organelles. Autophagy is activated under stress conditions induced by nutrient deprivation, hypoxia and drug treatments. Morphologically, autophagic cells are characterized by the accumulation of double membrane cytoplasmic vesicules called autophagosomes that surrounds cytoplasmic proteins and/or organelles. Autophagosomes next fuse with lysosomes to generate autolysosomes, the structures in which the retained constituents are digested before recycling into the cytoplasm. In this context, autophagy promotes cell survival under adverse conditions. In contrast, under certain circumstances autophagic cells may engage a specific mode of cell death called type II cell death or autophagic cell death (ACD). Considering the strategic positionnement of this process at the crossroads of cell death and survival, it is not surprising that defects in autophagy have been linked to a plethora of human diseases, including hematopoietic malignancies. Finally, autophagy induction is repressed by the mammalian target of rapamycin complex 1 (mTORC1) and favored by the adenosine-monophosphate activated-protein kinase (AMPK). In the present review, we focus on the functions of autophagy in normal and malignant hematopoiesis and discuss the opportunity to target the AMPK/mTOR pathways as a new therapeutic strategy to fight hematopoietic malignancies with a special emphasis on Chronic Myelogenous Leukemia (CML).  相似文献   

9.
《Autophagy》2013,9(7):980-990
Autophagy is a lysosomal-mediated degradation process that promotes cell survival during nutrient-limiting conditions. However, excessive autophagy results in cell death. In Drosophila, autophagy is regulated nutritionally, hormonally and developmentally in several tissues, including the fat body, a nutrient-storage organ. Here, we use a proteomics approach to identify components of starvation-induced autophagic responses in the Drosophila fat body. Using cICATTM labeling and mass spectrometry, differences in protein expression levels of normal compared to starved fat bodies were determined. Candidates were analyzed genetically for their involvement in autophagy in fat bodies deficient for the respective genes. One of these genes, Desat1, encodes a lipid desaturase. Desat1 mutant cells fail to induce autophagy upon starvation. The desat1 protein localizes to autophagic structures after nutrient depletion and is required for fly development. Lipid analyses revealed that Desat1 regulates the composition of lipids in Drosophila. We propose that Desat1 exerts its role in autophagy by controlling lipid biosynthesis and/or signaling necessary for autophagic responses.  相似文献   

10.
《Autophagy》2013,9(3):279-296
Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated subtstrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed.  相似文献   

11.
Activation of the DNA damage response (DDR) is critical for genomic integrity and tumor suppression. The occurrence of DNA damage quickly evokes the DDR through ATM/ATR-dependent signal transduction, which promotes DNA repair and activates the checkpoint to halt cell cycle progression (Halazonetis et al., 2008; Motoyama and Naka, 2004; Zhou and Elledge, 2000). The "turn off" process of the DDR upon satisfaction of DNA repair, also known as "checkpoint recovery", involves deactivation of DDR elements, but the mechanism is poorly understood. Greatwall kinase (Gwl) has been identified as a key element in the G2/M transition (Archambault et al., 2007; Jackson, 2006; Zhao et al., 2008; Yu et al., 2004; Yu et al., 2006; Zhao et al., 2006) and helps maintain M phase through inhibition of PP2A/B55δ (Burgess et al., 2010; Castilho et al., 2009; Goldberg, 2010; Lorca et al., 2010; Vigneron et al., 2009), the principal phosphatase for Cdk-phosphorylated substrates. Here we show that Gwl also promotes recovery from DNA damage and is itself directly inhibited by the DNA damage response (DDR). In Xenopus egg extracts, immunodepletion of Gwl increased the DDR to damaged DNA, whereas addition of wild type, but not kinase dead Gwl, inhibited the DDR. The removal of damaged DNA from egg extracts leads to recovery from checkpoint arrest and entry into mitosis, a process impaired by Gwl depletion and enhanced by Gwl over-expression. Moreover, activation of Cdk1 after the removal of damaged DNA is regulated by Gwl. Collectively, these results defines Gwl as a new regulator of the DDR, which plays an important role in recovery from DNA  相似文献   

12.
《Autophagy》2013,9(4):462-472
Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) than cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control.  相似文献   

13.
《Autophagy》2013,9(4):449-454
Autophagy is a cellular stress response that results in the activation of a lysosomal degradation pathway. In this report, we showed that cationic lipids, a common-used class of transfection reagents, induced genuine autophagy in mammalian cells. Extensive LC3 dot formation was observed by treatment with cationic lipids (with or without DNA), but not neutral lipids, in a HeLa cell line stably expressing GFP-LC3 (HeLa-LC3). Further proofs for autophagy were obtained by the co-localization of the LC3 dots with lysosome-specific staining patterns, observation of LC3-I to LC3-II form conversion and appearance of autophagic vacuoles under TEM. The autophagic flux assay with bafilomycin A1 and degradation of p62/SQSTM1 suggested that the autophagy induced by cationic lipids was primarily due to increased formation of autophagosomes and not decreased turnover. Moreover, cationic lipids induced autophagy in an mTOR-independent manner.  相似文献   

14.
《Autophagy》2013,9(8):1168-1178
Autophagy is a highly regulated trafficking pathway that leads to selective degradation of cellular constituents such as protein aggregates and excessive and damaged organelles. Atg1 is an essential part of the core autophagic machinery, which triggers induction of autophagy and the Cvt pathway. Although changes in Atg1 phosphorylation and complex formation are thought to regulate its function, the mechanism of Atg1 kinase activation remains unclear. Using a quantitative mass spectrometry approach, we identified 29 phosphorylation sites, of which five are either upregulated or downregulated by rapamycin treatment. Two phosphorylation sites, threonine 226 and serine 230, are evolutionarily conserved and located in the activation loop of the amino terminal kinase domain of Atg1. These phosphorylation events are not required for Atg1 localization to the phagosome assembly site (PAS), or the proper assembly of the multisubunit Atg1 kinase complex and binding to its activator Atg13. However, mutation of either one of these sites results in a loss of Atg1 kinase activity and its function in autophagy and the Cvt pathway. Taken together, our data suggest that phosphorylation of Atg1 on multiple sites provides critical mechanisms to regulate Atg1 function in autophagy and the Cvt pathway.  相似文献   

15.
《Autophagy》2013,9(1):27-39
Macroautophagy is a major lysosomal degradation pathway for cellular components in eukaryotic cells. Baseline macroautophagy is important for quality control of the cytoplasm in order to avoid the accumulation of cytotoxic products. Its stimulation by various stressful situations, including nutrient starvation, is important in maintaining cell survival. Here we demonstrate that macroautophagy is regulated differently depending on whether HeLa cells adhere to collagen I or collagen IV, proteins typical of connective tissue and basal membrane, respectively. We observed that the basal levels of macroautophagy were higher in cells plated on collagen IV than in cells plated on collagen I or on uncoated substrate. However, the stimulation of macroautophagy by nutrient starvation, as reflected by the buildup of autophagosomes and the increase in the autophagic flux, was higher in cells plated on collagen I than in cells plated on collagen IV. These contrasting results were not due to differences in the starvation-dependent inhibition of mTOR complex 1 signaling. Interestingly, cells plated on collagen IV formed numerous focal adhesions (FAs), whereas fewer FAs were observed in cells plated on the other substrates. This implies that focal adhesion kinase (FAK) was more robustly activated by collagen IV. Silencing the expression of FAK by siRNA in cells plated on collagen IV shifted the autophagic phenotype of these cells to an “uncoated substrate autophagic phenotype” under both basal and starvation-induced conditions. Moreover, cells plated on collagen IV were less dependent on autophagy to survive in the absence of nutrients. We conclude that extracellular matrix components can modulate macroautophagy and mitigate its role in cell survival.  相似文献   

16.
We recently showed that Ambra 1, a WD40-containing approximately 130 KDa protein, is a novel activating molecule in Beclin 1-regulated autophagy and plays a role in the development of the nervous system. Ambra 1 binds to Beclin 1 and favors Beclin 1/Vps34 interaction. At variance with these factors, Ambra 1 is highly conserved among vertebrates only, and its expression is mostly confined to the neuroepithelium during early neurogenesis. Ambra 1 functional inactivation in mouse led to lethality in utero (starting from embryonic day 14.5), characterized by severe neural tube defects associated with autophagy impairment, unbalanced cell proliferation, accumulation of ubiquitinated proteins, and excessive apoptosis. We also demonstrated that hyperproliferation was the earliest detectable abnormality in the developing neuroepithelium, followed by a wave of caspase-dependent cell death. These findings provided in vivo evidence supporting the existence of a complex interplay between autophagy, cell proliferation and cell death during neural development in mammals. In this article, we review our findings in the contexts of autophagy and neurodevelopment and consider some of the issues raised.  相似文献   

17.
《Autophagy》2013,9(10):1245-1246
Understanding the functional relationship between mitochondria and autophagy is critical for understanding the molecular mechanisms underlying aging and neurodegeneration. Autophagy functions in both cellular homeostasis and in quality control in the selective removal of dysfunctional mitochondria. A current working model in the field is that impaired autophagy results in a cell-damaging accumulation of dysfunctional mitochondria over time. We described our findings that respiratory-deficient mitochondria can inhibit general (macro) autophagy in Saccharomyces cerevisiae by conserved signaling pathways during amino acid starvation. These data point to an interdependence of mitochondrial function and autophagy and raise the possibility that negative regulation of autophagy by dysfunctional mitochondria is a critical contributing factor in many diseases.  相似文献   

18.
Graef M  Nunnari J 《Autophagy》2011,7(10):1245-1246
Understanding the functional relationship between mitochondria and autophagy is critical for understanding the molecular mechanisms underlying aging and neurodegeneration. Autophagy functions in both cellular homeostasis and in quality control in the selective removal of dysfunctional mitochondria. A current working model in the field is that impaired autophagy results in a cell-damaging accumulation of dysfunctional mitochondria over time. We described our findings that respiratory-deficient mitochondria can inhibit general (macro) autophagy in Saccharomyces cerevisiae by conserved signaling pathways during amino acid starvation. These data point to an interdependence of mitochondrial function and autophagy and raise the possibility that negative regulation of autophagy by dysfunctional mitochondria is a critical contributing factor in many diseases.  相似文献   

19.
Autophagy defends the mammalian cytosol against bacterial invasion. Efficient bacterial engulfment by autophagy requires cargo receptors that bind (a) homolog(s) of the ubiquitin-like protein Atg8 on the phagophore membrane. The existence of multiple ATG8 orthologs in higher eukaryotes suggests that they may perform distinct functions. However, no specific role has been assigned to any mammalian ATG8 ortholog. We recently discovered that the autophagy receptor CALCOCO2/NDP52, which detects cytosol-invading Salmonella enterica serovar Typhimurium (S. Typhimurium), preferentially binds LC3C. The CALCOCO2/NDP52-LC3C interaction is essential for cell-autonomous immunity against cytosol-exposed S. Typhimurium, because cells lacking either protein fail to target bacteria into the autophagy pathway. The selectivity of CALCOCO2/NDP52 for LC3C is determined by a novel LC3C interacting region (CLIR), in which the lack of the key aromatic residue of canonical LIRs is compensated by LC3C-specific interactions. Our findings provide a new layer of regulation to selective autophagy, suggesting that specific interactions between autophagy receptors and the ATG8 orthologs are of biological importance.  相似文献   

20.
A role for diacylglycerol acyltransferase during leaf senescence   总被引:18,自引:0,他引:18  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号