首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic fate-mapping approaches provide a unique opportunity to assess differentiation pathways under physiological conditions. We have recently employed a lineage tracing approach to define hematopoietic differentiation pathways in relation to expression of the tyrosine kinase receptor Flk2.1 Based on our examination of reporter activity across all stem, progenitor and mature populations in our Flk2-Cre lineage model, we concluded that all mature blood lineages are derived through a Flk2+ intermediate, both at steady-state and under stress conditions. Here, we re-examine in depth our initial conclusions and perform additional experiments to test alternative options of lineage specification. Our data unequivocally support the conclusion that onset of Flk2 expression results in loss of self-renewal but preservation of multilineage differentiation potential. We discuss the implications of these data for defining stem cell identity and lineage potential among hematopoietic populations.  相似文献   

2.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

3.
Although osteoblasts (OB) play a key role in the hematopoietic stem cell (HSC) niche, little is known as to which specific OB lineage cells are critical for the enhancement of stem and progenitor cell function. Unlike hematopoietic cells, OB cell surface phenotypic definitions are not well developed. Therefore, to determine which OB lineage cells are most important for hematopoietic progenitor cell (HPC) function, we characterized OB differentiation by gene expression and OB function, and determined whether associations existed between OB and HPC properties. OB were harvested from murine calvariae, used immediately (fresh OB) or cultured for 1, 2, or 3 weeks prior to their co‐culture with Lin?Sca1+c‐kit+ (LSK) cells for 1 week. OB gene expression, alkaline phosphatase activity, calcium deposition, hematopoietic cell number fold increase, CFU fold increase, and fold increase of Lin?Sca1+ cells were determined. As expected, HPC properties were enhanced when LSK cells were cultured with OB compared to being cultured alone. Initial alkaline phosphatase and calcium deposition levels were significantly and inversely associated with an increase in the number of LSK progeny. Final calcium deposition levels and OB culture duration were inversely associated with all HPC parameters, while Runx2 levels were positively associated with all HPC properties. Since calcium deposition is associated with OB maturation and high levels of Runx2 are associated with less mature OB lineage cells, these results suggest that less mature OB better promote HPC proliferation and function than do more mature OB. J. Cell. Biochem. 111: 284–294, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
A model of hematopoietic development wherein multipotentiality is conserved until segregation of myeloid and lymphoid potential has recently been challenged, proposing that megakaryocyte/erythrocyte (MegE) potential is lost in Flk2/Flt3-expressing early progenitors. Here, we used sensitive in vivo approaches to quantitatively and kinetically assess the MegE potential of hematopoietic stem cells and various Flk2(+) early progenitors and compared it with the MegE potential of downstream committed myeloid and lymphoid progenitors and with their ability to give rise to mature myelomonocytic and lymphoid cells. We demonstrate that Flk2(+) early progenitors retain MegE potential in vivo both at the population and clonal levels. These results indicate that Flk2 expression by early progenitors is not at the expense of full multipotency and support the current model of hematopoietic development with segregation of myeloid and lymphoid lineages from multipotent progenitors.  相似文献   

5.
Embryonic stem (ES) cells have the potential to develop into various cell lineages including hemangioblasts (Flk1+), a common progenitor for hematopoietic and vascular endothelial cells. Previous studies indicate that Flk1+ cells, a marker for hemangioblast, can be derived from ES cell and that Flk1+ can be differentiated into hematopoietic or endothelial cells depending on culture conditions. We developed an improved in vitro system to generate Flk1+-enriched cultures from mouse ES cells and used this in vitro system to study the role of Wnt signalling in early endothelial progenitor cells. We determined the expression of the Wnt and Frizzled genes in Flk1+ cells derived from mouse ES cells. RT-PCR analyses identified significantly higher expression of non-canonical Wnt5a and Wnt11 genes in Flk1+ cells compared to Flk1- cells. In contrast, expression of canonical Wnt3a gene was reduced in Flk1+ cells. In addition, Frizzled2, Frizzled5 and Frizzled7 genes were also expressed at a higher level in Flk1+ cells. The differential expression of Wnt and Frizzled genes in Flk1+ cells provides a novel insight into the role of non-canonical Wnt signalling in vascular endothelial fate determination.  相似文献   

6.
Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage   总被引:1,自引:0,他引:1  
Flk1 is one of the specific cell surface receptors for vascular endothelial growth factor and one of the most specific markers highlighting the earliest stage of hematopoietic and vascular lineages. However, recent new evidence suggests that these Flk1(+) mesodermal progenitor cells also contribute to muscle lineages. All evidence is based on the experiments using in vitro differentiation and in vivo transplantation systems. Although this approach revealed a differentiation potential range of Flk1(+) cells that is wider than previously expected, it fails to determine whether Flk1(+) cells contribute to muscle lineage as part of the normal developmental process. To obtain direct evidence for the fate of Flk1(+) cells in development, we used a knock-in mouse line where Cre is expressed in Flk1(+) cells. Studies with these Cre lines provide direct evidence that Flk1(+) cells are progenitors for muscles, in addition to hematopoietic and vascular endothelial cells.  相似文献   

7.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

8.
9.
The hematopoietic and endothelial lineages derive from mesoderm and are thought to develop through the maturation of a common progenitor, the hemangioblast. To investigate the developmental processes that regulate mesoderm induction and specification to the hemangioblast, we generated an embryonic stem cell line with the green fluorescent protein (GFP) targeted to the mesodermal gene, brachyury. After the in vitro differentiation of these embryonic stem cells to embryoid bodies, developing mesodermal progenitors could be separated from those with neuroectoderm potential based on GFP expression. Co-expression of GFP with the receptor tyrosine kinase Flk1 revealed the emergence of three distinct cell populations, GFP(-)Flk1(-), GFP(+)Flk1(-) and GFP(+)Flk1(+) cells, which represent a developmental progression ranging from pre-mesoderm to prehemangioblast mesoderm to the hemangioblast.  相似文献   

10.
The bone marrow is the principal site where HSCs and more mature blood cells lineage progenitors reside and differentiate in an adult organism. HSCs constitute a minute cell population of pluripotent cells capable of generating all blood cell lineages for a life-time1. The molecular dissection of HSCs homeostasis in the bone marrow has important implications in hematopoiesis, oncology and regenerative medicine. We describe the labeling protocol with fluorescent antibodies and the electronic gating procedure in flow cytometry to score hematopoietic progenitor subsets and HSCs distribution in individual mice (Fig. 1). In addition, we describe a method to extensively enrich hematopoietic progenitors as well as long-term (LT) and short term (ST) reconstituting HSCs from pooled bone marrow cell suspensions by magnetic enrichment of cells expressing c-Kit. The resulting cell preparation can be used to sort selected subsets for in vitro and in vivo functional studies (Fig. 2).Both trabecular osteoblasts2,3 and sinusoidal endothelium4 constitute functional niches supporting HSCs in the bone marrow. Several mechanisms in the osteoblastic niche, including a subset of N-cadherin+ osteoblasts3 and interaction of the receptor tyrosine kinase Tie2 expressed in HSCs with its ligand angiopoietin-15 concur in determining HSCs quiescence. "Hibernation" in the bone marrow is crucial to protect HSCs from replication and eventual exhaustion upon excessive cycling activity6. Exogenous stimuli acting on cells of the innate immune system such as Toll-like receptor ligands7 and interferon-α6 can also induce proliferation and differentiation of HSCs into lineage committed progenitors. Recently, a population of dormant mouse HSCs within the lin- c-Kit+ Sca-1+ CD150+ CD48- CD34- population has been described8. Sorting of cells based on CD34 expression from the hematopoietic progenitors-enriched cell suspension as described here allows the isolation of both quiescent self-renewing LT-HSCs and ST-HSCs9. A similar procedure based on depletion of lineage positive cells and sorting of LT-HSC with CD48 and Flk2 antibodies has been previously described10. In the present report we provide a protocol for the phenotypic characterization and ex vivo cell cycle analysis of hematopoietic progenitors, which can be useful for monitoring hematopoiesis in different physiological and pathological conditions. Moreover, we describe a FACS sorting procedure for HSCs, which can be used to define factors and mechanisms regulating their self-renewal, expansion and differentiation in cell biology and signal transduction assays as well as for transplantation.  相似文献   

11.
The role of apoptosis in regulating hematopoietic stem cell numbers   总被引:3,自引:0,他引:3  
The importance of apoptosis, in combination with proliferation, in maintaining stable populations has become increasingly clear in the last decade. Perturbation of either of these processes can have serious consequences, and result in a variety of disorders. Moreover, as the players and pathways gradually emerge, it turns out that there are strong connections in the regulation of cell cycle progression and apoptosis. Apoptosis, proliferation, and the disorders resulting from aberrant regulation have been studied in a variety of cell types and systems. Hematopoietic stem cells (HSC) are defined as primitive mesenchymal cells that are capable of both self-renewal and differentiation into the various cell lineages that constitute the functioning hematopoietic system. Many (but certainly not all) mature hematopoietic cells are relatively short-lived, sometimes with a half-life in the order of days. Homeostasis requires the production of 108 (mouse) to 1011 (human) cells each day. All of these cells are ultimately derived from HSC that mostly reside in the bone marrow in adult mammals. The study of the regulation of HSC numbers has focussed mainly on the choice between self-renewal and differentiation, symmetric and asymmetric cell divisions. Recently, however, it has been directly demonstrated that apoptosis plays an important role in the regulation of hematopoietic stem cells in vivo.  相似文献   

12.
13.
14.
15.
Extracellular nucleotides are emerging as important regulators of inflammation, cell proliferation and differentiation in a variety of tissues, including the hematopoietic system. In this study, the role of ATP was investigated during murine hematopoiesis. ATP was able to reduce the percentage of hematopoietic stem cells (HSCs), common myeloid progenitors and granulocyte–macrophage progenitors (GMPs), whereas differentiation into megakaryocyte–erythroid progenitors was not affected. In addition, in vivo administration of ATP to mice reduced the number of GMPs, but increased the number of Gr-1+Mac-1+ myeloid cells. ATP also induced an increased proliferation rate and reduced Notch expression in HSCs and impaired HSC-mediated bone marrow reconstitution in sublethally irradiated mice. Moreover, the effects elicited by ATP were inhibited by suramin, a P2 receptor antagonist, and BAPTA, an intracellular Ca2+ chelator. We further investigated whether the presence of cytokines might modulate the observed ATP-induced differentiation. Treatment of cells with cytokines (stem cell factor, interleukin-3 and granulocyte–monocyte colony stimulator factor) before ATP stimulation led to reduced ATP-dependent differentiation in long-term bone marrow cultures, thereby restoring the ability of HSCs to reconstitute hematopoiesis. Thus, our data suggest that ATP induces the differentiation of murine HSCs into the myeloid lineage and that this effect can be modulated by cytokines.  相似文献   

16.
Human pluripotent stem cell (hPSC)-derived endothelial lineage cells constitutes a promising source for therapeutic revascularization, but progress in this arena has been hampered by a lack of clinically-scalable differentiation protocols and inefficient formation of a functional vessel network integrating with the host circulation upon transplantation. Using a human embryonic stem cell reporter cell line, where green fluorescent protein expression is driven by an endothelial cell-specific VE-cadherin (VEC) promoter, we screened for > 60 bioactive small molecules that would promote endothelial differentiation, and found that administration of BMP4 and a GSK-3β inhibitor in an early phase and treatment with VEGF-A and inhibition of the Notch signaling pathway in a later phase led to efficient differentiation of hPSCs to the endothelial lineage within six days. This sequential approach generated > 50% conversion of hPSCs to endothelial cells (ECs), specifically VEC+CD31+CD34+CD14KDRhigh endothelial progenitors (EPs) that exhibited higher angiogenic and clonogenic proliferation potential among endothelial lineage cells. Pharmaceutical inhibition or genetical knockdown of Notch signaling, in combination with VEGF-A treatment, resulted in efficient formation of EPs via KDR+ mesodermal precursors and blockade of the conversion of EPs to mature ECs. The generated EPs successfully formed functional capillary vessels in vivo with anastomosis to the host vessels when transplanted into immunocompromised mice. Manipulation of this VEGF-A-Notch signaling circuit in our protocol leads to rapid large-scale production of the hPSC-derived EPs by 12- to 20-fold vs current methods, which may serve as an attractive cell population for regenerative vascularization with superior vessel forming capability compared to mature ECs.  相似文献   

17.
18.
19.
Hematopoietic stem cells are responsible for the generation of the entire blood system through life. This characteristic relies on their ability to self renew and on their multi-potentiality. Thus quantification of the number of hematopoietic stem cells in a given cell population requires to show both properties in the studied cell populations. Although xenografts models that support human hematopoietic stem cells have been described, such in vivo experimental systems remain restrictive for high throughput screening purposes for example. In this work we developed a conditional tetracycline inducible system controlling the expression of the human NOTCH ligand Delta-like 1 in the murine stromal MS5 cells. We cultured hematopoietic immature cells enriched in progenitor/stem cells in contact with MS5 cells that conditionally express Delta-like 1, in conditions designed to generate multipotential lineage differentiation. We show that upon induction or repression of DL1 expression during co-culture, human immature CD34+CD38−/low(CD45RACD90+) cells can express their B, T, NK, granulo/monocytic and erythroid potentials in a single well, and at the single cell level. We also document the interference of low NOTCH activation with human B and myelo/erythroid lymphoid differentiation. This system represents a novel tool to precisely quantify human hematopoietic immature cells with both lymphoid and myeloid potentials.  相似文献   

20.
Little is known about the mechanisms underlying the effects of Cyclosporin A (CsA) on the fate of stem cells, including cardiomyogenic differentiation. Therefore, we investigated the effects and the molecular mechanisms behind the actions of CsA on cell lineage determination of P19 cells. CsA induced cardiomyocyte-specific differentiation of P19 cells, with the highest efficiency at a concentration of 0.32 μM during embryoid body (EB) formation via activation of the Wnt signaling pathway molecules, Wnt3a, Wnt5a, and Wnt8a, and the cardiac mesoderm markers, Mixl1, Mesp1, and Mesp2. Interestingly, cotreatment of P19 cells with CsA plus dimethyl sulfoxide (DMSO) during EB formation significantly increases cardiac differentiation. In contrast, mRNA expression levels of hematopoietic and endothelial lineage markers, including Flk1 and Er71, were severely reduced in CsA-treated P19 cells. Furthermore, expression of Flk1 protein and the percentage of Flk1+ cells were severely reduced in 0.32 μM CsA-treated P19 cells compared to control cells. CsA significantly modulated mRNA expression levels of the cell cycle molecules, p53 and Cyclins D1, D2, and E2 in P19 cells during EB formation. Moreover, CsA significantly increased cell death and reduced cell number in P19 cells during EB formation. These results demonstrate that CsA induces cardiac differentiation but inhibits hemato-endothelial differentiation via activation of the Wnt signaling pathway, followed by modulation of cell lineage-determining genes in P19 cells during EB formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号