首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RPA is an initiation factor for human chromosomal DNA replication   总被引:4,自引:0,他引:4       下载免费PDF全文
The initiation of chromosomal DNA replication in human cell nuclei is not well understood because of its complexity. To allow investigation of this process on a molecular level, we have recently established a cell-free system that initiates chromosomal DNA replication in an origin-specific manner under cell cycle control in isolated human cell nuclei. We have now used fractionation and reconstitution experiments to functionally identify cellular factors present in a human cell extract that trigger initiation of chromosomal DNA replication in this system. Initial fractionation of a cytosolic extract indicates the presence of at least two independent and non-redundant initiation factors. We have purified one of these factors to homogeneity and identified it as the single-stranded DNA binding protein RPA. The prokaryotic single-stranded DNA binding protein SSB cannot substitute for RPA in the initiation of human chromosomal DNA replication. Antibodies specific for human RPA inhibit the initiation step of human chromosomal DNA replication in vitro. RPA is recruited to DNA replication foci and becomes phosphorylated concomitant with the initiation step in vitro. These data establish a direct functional role for RPA as an essential factor for the initiation of human chromosomal DNA replication.  相似文献   

2.
3.
Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.  相似文献   

4.
Replication control of autonomously replicating human sequences.   总被引:1,自引:1,他引:0       下载免费PDF全文
Three autonomously replicating plasmids carrying human genomic DNA and a vector derived from Epstein-Barr virus were studied by density labelling to determine the number of times per cell cycle these plasmids replicate in human cells. Each of the plasmids replicated semi-conservatively once per cell cycle. The results suggest that these human autonomously replicating sequences undergo replication following the same controls as chromosomal DNA and represent a good model system for studying chromosomal replication. We also determined the time within the S phase of the cell cycle that three of the plasmids replicate. Centromeric alpha sequences, which normally replicate late in S phase when in their chromosomal context, were found to replicate earlier when they mediate replication on an extrachromosomal vector. Reproducible patterns of replication within S phase were found for the plasmids, suggesting that the mechanism specifying time of replication may be subject to experimental analysis with this system.  相似文献   

5.
D M Gilbert  S N Cohen 《Cell》1987,50(1):59-68
Bovine papilloma virus (BPV) replicates as a multicopy nuclear plasmid in mouse fibroblasts. Using fluorescence activated cell sorting and mitotic selection procedures, we show that the replication of BPV occurs throughout S phase of the cell cycle and that replication is confined to S phase. After one round of chromosomal DNA replication, almost one quarter of BPV plasmids have replicated more than once, while a similar number of plasmids have not replicated at all. While multiple forms of BPV exist in the cell, all forms show the same pattern of replication. These results are consistent with a model in which BPV plasmids are chosen at random for replication throughout, and only during, S phase and support the view that the completion of S phase is a specifically activated event in the cell cycle rather than simply the end of one round of chromosomal DNA replication.  相似文献   

6.
Cyclin-dependent kinases (CDKs) play a central role in the regulation of cell cycle progression in eukaryotes. The onset of S phase, the initiation of chromosomal DNA replication, is a major cell cycle event that is regulated by CDKs. Eukaryotic chromosomal DNA replication is highly regulated and occurs as a two-step reaction. The first reaction, known as licensing, is essential for DNA replication by making cell replication competent and occurs in G1 phase. Once cells enter S phase, licensed chromosomes initiate DNA replication through the action of two conserved protein kinases, S phase-specific CDK and Cdc7-Dbf4 (or Dbf4-dependent kinase). Our understanding of the regulatory mechanisms of DNA replication in model eukaryotes has advanced considerably in the past decade. In this review, we overview the regulation of DNA replication in the eukaryotic cell cycle, focusing specifically on how CDKs regulate the initiation step of DNA replication.  相似文献   

7.
The integrity of genomic DNA during the cell division cycle in eukaryotic cells is maintained by regulated chromosomal DNA replication and repair of damaged DNA. We have used fractionation and reconstitution experiments to purify essential factors for the initiation of human chromosomal DNA replication in late G1 phase template nuclei from human cells. Here, we report the identification of soluble PCNA as an essential initiation factor in this system. Recombinant histidine-tagged human PCNA can substitute for purified endogenous human PCNA to initiate human chromosomal DNA replication. It is recruited specifically to discrete DNA replication foci formed during initiation in vitro. The template nuclei also contain DNA breaks as result of the synchronisation procedure. A separate population of chromatin-bound PCNA is already present in these template nuclei at discrete DNA damage foci, co-localising with gamma-H2AX, RPA and Rad51. This DNA damage-associated PCNA population is marked by mono-ubiquitination, suggesting that it is involved in DNA repair. Importantly, the population of damage focus-associated PCNA is neither involved in, nor required for, the initiation of chromosomal DNA replication in the same nuclei.  相似文献   

8.
V A Zakian  B J Brewer  W L Fangman 《Cell》1979,17(4):923-934
Saccharomyces cerevisiae contains 50-100 copies per cell of a circular plasmid called 2 micron DNA. Replication of this DNA was studied in two ways. The distribution of replication events among 2 micron DNA molecules was examined by density transfer experiments with asynchronous cultures. The data show that 2 micron DNA replication is similar to chromosomal DNA replication: essentially all 2 micron duplexes were of hybrid density at one cell doubling after the density transfer, with the majority having one fully dense strand and one fully light strand. The results show that replication of 2 micron DNA occurs by a semiconservative mechanism where each of the plasmid molecules replicates once each cell cycle. 2 micron DNA is the only known example of a multiple-copy, extrachromosomal DNA in which every molecule replicates in each cell cycle. Quantitative analysis of the data indicates that 2 micron DNA replication is limited to a fraction of the cell cycle. The period in the cell cycle when 2 micron DNA replicates was examined directly with synchronous cell cultures. Synchronization was accomplished by sequentially arresting cells in G1 phase using the yeast pheromone alpha-factor and incubating at the restrictive temperature for a cell cycle (cdc 7) mutant. Replication was monitored by adding 3H-uracil to cells previously labeled with 14C-uracil, and determining the 3H/14C ratio for purified DNA species. 2 micron DNA replication did not occur during the G1 arrest periods. However, the population of 2 micron DNA doubled during the synchronous S phase at the permissive temperature, with most of the replication occurring in the first third of S phase. Our results indicate that a mechanism exists which insures that the origin of replication of each 2 micron DNA molecule is activated each S phase. As with chromosomal DNA, further activation is prevented until the next cell cycle. We propose that the mechanism which controls the replication initiation of each 2 micron DNA molecule is identical to that which controls the initiation of chromosomal DNA.  相似文献   

9.
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.  相似文献   

10.
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.  相似文献   

11.
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions.  相似文献   

12.
The faithful inheritance of chromosomes during cell division requires their precise replication and segregation. Numerous mechanisms ensure that each of these fundamental cell cycle events is performed with a high degree of fidelity. The fidelity of chromosomal replication is maintained in part by re-replication controls that ensure there are no more than two copies of every genomic segment to distribute to the two daughter cells. This control is enforced by inhibiting replication initiation proteins from reinitiating replication origins within a single cell cycle. Here we show in Saccharomyces cerevisiae that re-replication control is important for the fidelity of chromosome segregation. In particular, we demonstrate that transient re-replication of centromeric DNA due to disruption of re-replication control greatly induces aneuploidy of the re-replicated chromosome. Some of this aneuploidy arises from missegregation of both sister chromatids to one daughter cell. Aneuploidy can also arise from the generation of an extra sister chromatid via homologous recombination, suggesting that centromeric re-replication can trigger breakage and repair events that expand chromosome number without causing chromosomal rearrangements. Thus, we have identified a potential new non-mitotic source of aneuploidy that can arise from a defect in re-replication control. Given the emerging connections between the deregulation of replication initiation proteins and oncogenesis, this finding may be relevant to the aneuploidy that is prevalent in cancer.  相似文献   

13.
Preventing re-replication of chromosomal DNA   总被引:1,自引:0,他引:1  
To ensure its duplication, chromosomal DNA must be precisely duplicated in each cell cycle, with no sections left unreplicated, and no sections replicated more than once. Eukaryotic cells achieve this by dividing replication into two non-overlapping phases. During late mitosis and G1, replication origins are 'licensed' for replication by loading the minichromosome maintenance (Mcm) 2-7 proteins to form a pre-replicative complex. Mcm2-7 proteins are then essential for initiating and elongating replication forks during S phase. Recent data have provided biochemical and structural insight into the process of replication licensing and the mechanisms that regulate it during the cell cycle.  相似文献   

14.
Molecular anatomy of the DNA damage and replication checkpoints   总被引:12,自引:0,他引:12  
Qin J  Li L 《Radiation research》2003,159(2):139-148
Cell cycle checkpoints are signal transduction pathways that enforce the orderly execution of the cell division cycle and arrest the cell cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, and spindle disruption. The primary function of the cell cycle checkpoint is to ensure that the integrity of chromosomal DNA is maintained. DNA lesions and disrupted replication forks are thought to be recognized by the DNA damage checkpoint and replication checkpoint, respectively. Both checkpoints initiate protein kinase-based signal transduction cascade to activate downstream effectors that elicit cell cycle arrest, DNA repair, or apoptosis that is often dependent on dose and cell type. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage. Genetic components of the damage and replication checkpoints have been identified in yeast and humans, and a working model is beginning to emerge. We summarize recent advances in the DNA damage and replication checkpoints and discuss the essential functions of the proteins involved in the checkpoint responses.  相似文献   

15.
Archaea of the genus Sulfolobus have a single-circular chromosome with three replication origins. All three origins fire in every cell in every cell cycle. Thus, three pairs of replication forks converge and terminate in each replication cycle. Here, we report 2D gel analyses of the replication fork fusion zones located between origins. These indicate that replication termination involves stochastic fork collision. In bacteria, replication termination is linked to chromosome dimer resolution, a process that requires the XerC and D recombinases, FtsK and the chromosomal dif site. Sulfolobus encodes a single-Xer homologue and its deletion gave rise to cells with aberrant DNA contents and increased volumes. Identification of the chromosomal dif site that binds Xer in vivo, and biochemical characterization of Xer/dif recombination revealed that, in contrast to bacteria, dif is located outside the fork fusion zones. Therefore, it appears that replication termination and dimer resolution are temporally and spatially distinct processes in Sulfolobus.  相似文献   

16.
Cdc47p is a member of the minichromosome maintenance (MCM) family of polypeptides, which have a role in the early stages of chromosomal DNA replication. Here, we show that Cdc47p assembles into stable complexes with two other members of the MCM family, Cdc46p and Mcm3p. The assembly of Cdc47p into complexes with Cdc46p does not appear to be cell cycle regulated, making it unlikely that these interactions per se are a rate-limiting step in the control of S phase. Cdc45p is also shown to interact with Cdc47p in vivo and to be a component of high-molecular-weight MCM complexes in cell lysates. Like MCM polypeptides, Cdc45p is essential for the initiation of chromosomal DNA replication in Saccharomyces cerevisiae; however, Cdc45p remains in the nucleus throughout the cell cycle, whereas MCMs are nuclear only during G1. We characterize two mutations in CDC47 and CDC46 which arrest cells with unduplicated DNA as a result of single base substitutions. The corresponding amino acid substitutions in Cdc46p and Cdc47p severely reduce the ability of these polypeptides to assemble in a complex with each other in vivo and in vitro. This argues that assembly of Cdc47p into complexes with other MCM polypeptides is important for its role in the initiation of chromosomal DNA replication.  相似文献   

17.
The initiation of chromosomal replication occurs only once during the prokaryote cell cycle. Some origins of replication have been experimentally determined and have led to the development of in silico approaches to find the origin of replication among other prokaryotes. DNA base composition asymmetry is the basis of numerous in silico methods used to detect the origin and terminus of replication in prokaryotes. However, the composition asymmetry does not allow us to locate precisely the positions of the origin and terminus. Since DNA replication is a key step in the cell cycle it is important to determine properly the origin and terminus regions. Therefore, we have reviewed here the methods, tools, and databases for predicting the origins and terminuses of replication, and we have proposed some complementary analyses to reinforce these predictions. These analyses include finding the dnaA gene and its binding sites; making BLAST analyses of the intergenic sequences compared to related species; studying the gene order around the origin sequence; and studying the distribution of the genes encoded in the leading versus the lagging strand.  相似文献   

18.
In both eukaryotes and prokaryotes, chromosomal DNA undergoes replication, condensation–decondensation and segregation, sequentially, in some fixed order. Other conditions, like sister‐chromatid cohesion (SCC), may span several chromosomal events. One set of these chromosomal transactions within a single cell cycle constitutes the ‘chromosome cycle’. For many years it was generally assumed that the prokaryotic chromosome cycle follows major phases of the eukaryotic one: –replication–condensation–segregation–(cell division)–decondensation–, with SCC of unspecified length. Eventually it became evident that, in contrast to the strictly consecutive chromosome cycle of eukaryotes, all stages of the prokaryotic chromosome cycle run concurrently. Thus, prokaryotes practice ‘progressive’ chromosome segregation separated from replication by a brief SCC, and all three transactions move along the chromosome at the same fast rate. In other words, in addition to replication forks, there are ‘segregation forks’ in prokaryotic chromosomes. Moreover, the bulk of prokaryotic DNA outside the replication–segregation transition stays compacted. I consider possible origins of this concurrent replication–segregation and outline the ‘nucleoid administration’ system that organizes the dynamic part of the prokaryotic chromosome cycle.  相似文献   

19.
The ATP-bound but not the ADP-bound form of DnaA protein is active for replication initiation at the Escherichia coli chromosomal origin. The hydrolysis of ATP bound to DnaA is accelerated by the sliding clamp of DNA polymerase III loaded on DNA. Using a culture of randomly dividing cells, we now have evidence that the cellular level of ATP-DnaA is repressed to only approximately 20% of the total DnaA molecules, in a manner depending on DNA replication. In a synchronized culture, the ATP-DnaA level showed oscillation that has a temporal increase around the time of initiation, and decreases rapidly after initiation. Production of ATP-DnaA depended on concomitant protein synthesis, but not on SOS response, Dam or SeqA. Regeneration of ATP-DnaA from ADP-DnaA was also observed. These results indicate that the nucleotide form shifts of DnaA are tightly linked with an epistatic cell cycle event and with the chromosomal replication system.  相似文献   

20.
Replication licensing--defining the proliferative state?   总被引:16,自引:0,他引:16  
The proliferation of eukaryotic cells is a highly regulated process that depends on the precise duplication of chromosomal DNA in each cell cycle. Regulation of the replication licensing system, which promotes the assembly of complexes of proteins termed Mcm2-7 onto replication origins, is responsible for preventing re-replication of DNA in a single cell cycle. Recent work has shown how the licensing system is directly controlled by cyclin-dependent kinases (CDKs). Repression of origin licensing is emerging as a ubiquitous route by which the proliferative capacity of cells is lowered, and Mcm2-Mcm7 proteins show promise as diagnostic markers of early cancer stages. These results have prompted us to propose a functional distinction between the proliferative state and the non-proliferative state (including G0) depending on whether origins are licensed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号