首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3′-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.  相似文献   

2.
3.
Hypoxic tumors are resistant to conventional therapies through indirect mechanisms such as the selection of resistant phenotype under chronic hypoxia. Hyperbaric oxygen (HBO) therapy has been shown to increase oxygen level and induce apoptosis in hypoxic tumor. However, it could produce significant adverse effects including oxygen toxic seizures and severe radiation tissue injury due to high pressure. We have shown that repeated oxygenation at 30% O2 (1 atmospheres absolute) results in significant regression of MCF-7 tumor xenografts without any adverse effect. In MCF-7 cells, re-oxygenation showed an eightfold increase in cellular apoptosis. Both in hypoxic tumor and in hypoxic cells, that exclusively favor p53 to exist in mutant conformation, re-oxygenation restores p53 wild-type conformation. The oxygen-mediated rescue of mutant p53 followed by its trans-activation is responsible for the induction of p53-downstream apoptotic, cell-cycle arrest and DNA-repair genes. Further, p53 trans-activation may thus be due to its post-translational modifications as a result of re-oxygenation. We have thus concluded that oxygen therapy without pressure, as opposed to HBO therapy, may be ideal for hypoxic tumor regression, which functions through oxygen-mediated rescue of mutant p53 followed by induction of apoptosis.  相似文献   

4.
目的:探究缺氧微环境SIRT1亚细胞定位对结直肠癌细胞凋亡的影响及其分子机制。方法:将编码过表达野生型SIRT1以及核定位序列(nuclear localization sequence,NLS)突变型SIRT1(SIRT1NLSmt)的慢病毒载体转染人类结肠癌HCT116细胞株,经嘌呤霉素筛选获得稳定过表达野生型SIRT1细胞株(LV-SIRT1细胞)和细胞质定位的NLS突变型SIRT1细胞株(LV-SIRT1NLSmt细胞),通过观察慢病毒载体编码的SIRT1-GFP融合蛋白的荧光定位,明确稳定转染细胞中外源性SIRT1的亚细胞定位。利用real-time PCR、Western blot法对分离提取的核-质蛋白进行检测,证实外源性SIRT1的表达和亚细胞定位情况。利用CCK-8细胞毒性实验、流式细胞术检测和TUNEL染色比较缺氧(1%O2)处理前后LV-SIRT1和LV-SIRT1NLSmt细胞存活或凋亡情况,Western blot法检测凋亡相关蛋白p53、ac-p53(K382)、Bcl-2、Bax、caspase-3和cleaved caspase-3表达水平。结果:Western blot、real-time PCR和免疫荧光染色结果显示稳定转染细胞均存在外源性SIRT1的过表达,NLS突变可导致SIRT1NLSmt富集于细胞质中;与亲本细胞HCT116和LV-SIRT1NLSmt细胞相比,LV-SIRT1细胞对缺氧的耐受能力最差、细胞凋亡水平最高,凋亡相关蛋白p53、Bax、caspase-3、cleaved caspase-3表达水平显著升高,ac-p53(K382)和Bcl-2表达水平显著下降,且LV-SIRT1细胞的胞核ac-p53下降最为显著。结论:在缺氧微环境中,细胞核定位的SIRT1通过影响p53的去乙酰化水平促进结直肠癌细胞凋亡。  相似文献   

5.
We have studied hypoxia-induced inactivation of cells from three established human cell lines with different p53 status. Hypoxia was found to induce apoptosis in cells expressing wild-type p53 (MCF-7 cells), but not in cells where p53 is either mutated (T-47D cells), or abrogated by expression of the HPV18 E6 oncoprotein (NHIK 3025 cells). Apoptosis was demonstrated by DNA fragmentation, using agarose gel electrophoresis of DNA and DNA nick end labeling (TUNEL). We demonstrate that extremely hypoxic conditions (<4 ppm O2) do not cause any change of expression in the p53 protein level in these three cell lines. In addition, the localization of p53 in MCF-7 cells was found exclusively in the nucleus in only some of the cells both under aerobic and hypoxic conditions. Furthermore, no correlation was found between the p53-expression level and whether or not a cell underwent apoptosis. Flow cytometric TUNEL analysis of MCF-7 cells revealed that initiation of apoptosis occurred in all phases of the cell cycle, although predominantly for cells in S phase. Apoptosis was observed only during a limited time window (i.e., ≈10 to ≈24 h) after the onset of extreme hypoxia. While 66% of the MCF-7 cells lost their ability to form visible colonies following 15 h exposure to extreme hypoxia, only ∼28% were induced to apoptosis, suggesting that ∼38% were inactivated by other death processes. Commitment to apoptotic cell death was observed in MCF-7 cells even for oxygen concentrations as high as 5000 ppm. Our present results indicate that the p53 status in these three tumor cell lines does not have any major influence on cell's survival following exposure to extremely hypoxic conditions, whereas following moderate hypoxia, cells expressing functional p53 enhanced their susceptibility to cell death. Taken together, although these results suggest that functional p53 might play a role in the induction of apoptosis during hypoxia, other factors seem to be equally important.  相似文献   

6.
We demonstrated that exogenous pyruvate promotes survival under glucose depletion in aerobic mutant p53 (R175H) human melanoma cells. Others subsequently indicated that mutant p53 tumor cells undergo p53 degradation and cell death under aerobic glucose-free conditions. Since glucose starvation occurs in hypoxic gradients of poorly vascularized tumors, we investigated the role of p53 siRNA under hypoxia in wt p53 C8161 melanoma using glucose starvation or 5 mM physiological glucose. p53 Silencing decreased survival of glucose-starved C8161 melanoma with pyruvate supplementation under hypoxia (?1% oxygen), but increased resistance to glycolytic inhibitors oxamate and 2-deoxyglucose in 5 mM glucose, preferentially under normoxia. Aiming to counteract hypoxic tumor cell survival irrespective of p53 status, genetically-matched human C8161 melanoma harboring wt p53 or mutant p53 (R175H) were used combining true hypoxia (?1% oxygen) and hypoxia mimetic CoCl2. No significant decrease in metabolic activity was evidenced in C8161 melanoma irrespective of p53 status in 2.5 mM glucose after 48 h of physical hypoxia. However, combining the latter with 100 μM CoCl2 was preferentially toxic for mutant p53 C8161 melanoma, and was enhanced by catalase in wt p53 C8161 cells. Downregulation of MnSOD and LDHA accompanied the toxicity induced by hypoxia and CoCl2 in 5 mM glucose, and these changes were enhanced by oxamate or 2-deoxyglucose. Our results show for the first time that survival of malignant cells in a hypoxic microenvironment can be counteracted by hypoxia mimetic co-treatment in a p53 dependent manner.  相似文献   

7.
Mdm2 (Murine Double Minute-2) is required to control cellular p53 activity and protein levels. Mdm2 null embryos die of p53-mediated growth arrest and apoptosis at the peri-implantation stage. Thus, the absolute requirement for Mdm2 in organogenesis is unknown. This study examined the role of Mdm2 in kidney development, an organ which develops via epithelial–mesenchymal interactions and branching morphogenesis. Mdm2 mRNA and protein are expressed in the ureteric bud (UB) epithelium and metanephric mesenchyme (MM) lineages. We report here the results of conditional deletion of Mdm2 from the UB epithelium. UBmdm2−/− mice die soon after birth and uniformly display severe renal hypodysplasia due to defective UB branching and underdeveloped nephrogenic zone. Ex vivo cultured UBmdm2−/− explants exhibit arrested development of the UB and its branches and consequently develop few nephron progenitors. UBmdm2−/− cells have reduced proliferation rate and enhanced apoptosis. Although markedly reduced in number, the UB tips of UBmdm2−/−metanephroi continue to express c-ret and Wnt11; however, there was a notable reduction in Wnt9b, Lhx-1 and Pax-2 expression levels. We further show that the UBmdm2−/− mutant phenotype is mediated by aberrant p53 activity because it is rescued by UB-specific deletion of the p53 gene. These results demonstrate a critical and cell autonomous role for Mdm2 in the UB lineage. Mdm2-mediated inhibition of p53 activity is a prerequisite for renal organogenesis.  相似文献   

8.
9.
10.
11.
12.
13.
Cardiovascular diseases are the leading cause of death globally, among which acute myocardial infarction (AMI) frequently occurs in the heart and proceeds from myocardium ischemia and endoplasmic reticulum (ER) stress-induced cell death. Numerous studies on miRNAs indicated their potential as diagnostic biomarkers and treatment targets for heart diseases. Our study investigated the role of miR-17-5p and its regulatory mechanisms during AMI. Echocardiography, MTT, flow cytometry assay, evaluation of caspase-3 and lactate dehydrogenase (LDH) activity were conducted to assess cell viability, apoptosis in an MI/R mice model, and an H2O2-induced H9c2 hypoxia cell model, respectively. The expression levels of ER stress response-related biomarkers were detected using qRT-PCR, IHC, and western blotting assays. The binding site of miR-17-5p on Tsg101 mRNA was determined by bioinformatic prediction and luciferase reporter assay. The expression levels of miR-17-5p were notably elevated in MI/R mice and hypoxia cell models, accompanied by enhanced cell apoptosis. Inhibition of miR-17-5p led to decreased apoptosis related to ER stress response in the hypoxia model, which could be counteracted by knockdown of Tsg101 (tumor susceptibility gene 101). Transfection with miR-17-5p mimics downregulated the expression of Tsg101 in H9c2 cells. Luciferase assay demonstrated the binding between miR-17-5p and Tsg101. Moreover, 4-PBA, the inhibitor of the ER stress response, abolished shTsg101 elevated apoptosis in hypoxic H9c2 cells. Our findings investigated the pro-apoptotic role of miR-17-5p during MI/R, disclosed the specific mechanism of miR-17-5p/Tsg101 regulatory axis in ER stress-induced myocardium injury and cardiomyocytes apoptosis, and presented a promising diagnostic biomarker and potential target for therapy of AMI.  相似文献   

14.
In general, tumors cells that are resistant to apoptosis and increase angiogenesis are a result of the hypoxic responses contributing to the malignant phenotype. In this study, we developed a chronic hypoxic cell model (HMLL), by incubating the prostate cancer MatLyLu cells in a hypoxic chamber (1% O2) over 3 weeks. Surviving cells were selected through each cell passage and were grown in the hypoxic condition up to 8 weeks. This strategy resulted in survival of only 5% of the cells. The surviving hypoxic cells displayed a greater stimulation on hypoxic adaptive response, including a greater expression of glucose transporter1 (Glut1) and VEGF secretion. In addition, higher invasion activity was observed in the chronic hypoxic HMLL cells as compared to MatLyLu cells exposed to acute hypoxia (1% O2, 5 h) using the matrigel assay. To further examine the role of HIF-1α in tumor progression, both MatLyLu and HMLL cells were transfected with dominant-negative form of HIF-1α (DNHIF-1α). The Matrigel invasion activity induced by chronic hypoxia was significantly attenuated by DNHIF-1α. These results suggest that signaling pathways leading to hypoxic response may be differentially regulated in chronic hypoxic cells and acute hypoxic cells. Chronic hypoxia may play a greater role than acute hypoxia in promoting the aggressive phenotype of tumor cells. This observation mimics the clinical scenario where tumor cells following treatment with radiation are subjected to hypoxic conditions. The reemergence of tumor following treatment usually results in tumor cells that are more aggressive and metastatic.  相似文献   

15.
Decreases in Amino Acid and Acetylcholine Metabolism During Hypoxia   总被引:5,自引:4,他引:1  
Abstract: Hypoxia impairs brain function by incompletely defined mechanisms. Mild hypoxia, which impairs memory and judgment, decreases acetylcholine (ACh) synthesis, but not the levels of ATP or the adenylate energy charge. However, the effects of mild hypoxia on the synthesis of the glucosederived amino acids [alanine, aspartate, γ-amino butyric acid (GABA), glutamate, glutamine, and serine] have not been characterized. Thus, we examined the incorporation of [U-14C]glucose into these amino acids and ACh during anemic hypoxia (injection of NaNO2), hypoxic hypoxia (15 or 10% O2), and hypoxic hypoxia plus hypercarbia (15 or 10% O2 with 5% CO2). In general, the synthesis of the amino acids and of ACh declined in parallel with each type of hypoxia we studied. For example, anemic hypoxia (75 mg/kg of NaNO2) decreased the incorporation of [U-14C]glucose into the amino acids and into ACh similarly. [Percent inhibition: ACh (57.4), alanine (34.4), aspartate (49.2), GABA (61.9). glutamine (59.2), glutamate (51.0), and serine (36.7)]. A comparison of several levels (37.5, 75, 150, 225 mg/kg of NaNO2) of anemic hypoxia showed a parallel decrease in the flux of glucose into ACh and into the amino acids whose synthesis depends on mitochondrial oxidation: GABA (r= 0.98), glutamate (r= 0.99), aspartate (r= 0.96), and glutamine (r= 0.97). The synthesis of the amino acids not dependent on mitochondrial oxidation did not correlate as well with changes in ACh metabolism: serine (r= 0.68) and alanine (r= 0.76). The decreases in glucose incorporation into ACh and into the amino acids with hypoxic hypoxia (15% or 10% O2) or hypoxic hypoxia with 5% CO2 were very similar to those with the two lowest levels of anemic hypoxia. Thus, any explanation of the brain's sensitivity to a decrease in oxygen availability must include the alterations in the metabolism of the amino acid neurotransmitters as well as ACh.  相似文献   

16.
TH Hung  SF Chen  LM Lo  MJ Li  YL Yeh  TT Hsieh 《PloS one》2012,7(7):e40957

Background

Unexplained intrauterine growth restriction (IUGR) may be a consequence of placental insufficiency; however, its etiology is not fully understood. We surmised that defective placentation in IUGR dysregulates cellular bioenergic homeostasis, leading to increased autophagy in the villous trophoblast. The aims of this work were (1) to compare the differences in autophagy, p53 expression, and apoptosis between placentas of women with normal or IUGR pregnancies; (2) to study the effects of hypoxia and the role of p53 in regulating trophoblast autophagy; and (3) to investigate the relationship between autophagy and apoptosis in hypoxic trophoblasts.

Methodology/Principal Findings

Compared with normal pregnant women, women with IUGR had higher placental levels of autophagy-related proteins LC3B-II, beclin-1, and damage-regulated autophagy modulator (DRAM), with increased p53 and caspase-cleaved cytokeratin 18 (M30). Furthermore, cytotrophoblasts cultured under hypoxia (2% oxygen) in the presence or absence of nutlin-3 (a p53 activity stimulator) had higher levels of LC3B-II, DRAM, and M30 proteins and increased Bax mRNA expression compared with controls cultured under standard conditions. In contrast, administration of pifithrin-α (a p53 activity inhibitor) during hypoxia resulted in protein levels that were similar to those of the control groups. Moreover, cytotrophoblasts transfected with LC3B, beclin-1, or DRAM siRNA had higher levels of M30 compared with the controls under hypoxia. However, transfection with Bcl-2 or Bax siRNA did not cause any significant change in the levels of LC3B-II in hypoxic cytotrophoblasts.

Conclusions/Significance

Together, these results suggest that there is a crosstalk between autophagy and apoptosis in IUGR and that p53 plays a pivotal and complex role in regulating trophoblast cell turnover in response to hypoxic stress.  相似文献   

17.
18.
19.
The Hb-O2 affinity and the erythropoietic response as a function of time were studied in mice treated with sodium cyanate for up to 2 months. Cyanate increased the Hb-O2 affinity in normoxic mice more than in chronically hypoxic mice. The hemoglobin concentration rose as a function of time both in normoxic and hypoxic conditions but reached higher levels in hypoxia. After 42 days of study (21 days of hypoxia) hemoglobin reached maximum levels and thereafter showed a plateau in both cyanate and control animals. It is concluded that a chronic left-shifted oxygen dissociation curve does not avoid the development of hypoxic polycythemia in mice. Moreover, prolonged cyanate administration potentiates the crythropoietic response to chronic hypoxia. Since polycythemia is an index of tissue hypoxia, the results show that the high hemoglobin affinity did not prevent tissue hypoxia in low PO2 conditions. Results showing beneficial effects of high hemoglobin oxygen affinity induced by cyanate based on acute hypoxic expositions should be cautiously interpreted with regard to their adaptive value in animals chronically exposed to natural or simulated hypoxia.Abbreviations Hb hemoglobin - NaOCN sodium cyanate - ODC oxygen dissociation curve - P 50 PO2 at which hemoglobin is half saturated with O2  相似文献   

20.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号