首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine122 is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.  相似文献   

2.
Meiotic oocytes lack classic centrosomes; therefore, bipolar spindle assembly depends on the clustering of acentriolar microtubule‐organizing centers (MTOCs) into two poles. The bipolar spindle is an essential cellular component that ensures accurate chromosome segregation during anaphase. If the spindle does not form properly, it can result in aneuploidy or cell death. However, the molecular mechanism by which the bipolar spindle is established is not yet fully understood. Tumor suppressor p53‐binding protein 1 (TP53BP1) is known to mediate the DNA damage response. Several recent studies have indicated that TP53BP1 has noncanonical roles in processes, such as spindle formation; however, the role of TP53BP1 in oocyte meiosis is currently unclear. Our results show that TP53BP1 knockdown affects spindle bipolarity and chromatin alignment by altering MTOC stability during oocyte maturation. TP53BP1 was localized in the cytoplasm and displayed an irregular cloud pattern around the spindle/chromosome region. TP53BP1 was also required for the correct localization of MTOCs into the two spindle poles during pro‐meiosis I. TP53BP1 deletion altered the MTOC‐localized Aurora Kinase A. TP53BP1 knockdown caused the microtubules to detach from the kinetochores and increased the rate of aneuploidy. Taken together, our data show that TP53BP1 plays crucial roles in chromosome stability and spindle bipolarity during meiotic maturation.  相似文献   

3.
《Developmental cell》2022,57(2):197-211.e3
  1. Download : Download high-res image (232KB)
  2. Download : Download full-size image
  相似文献   

4.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

5.
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.  相似文献   

6.
Staufen2 (Stau2) is a double-stranded RNA-binding protein involved in cell fate decision by regulating mRNA transport, mRNA stability, translation, and ribonucleoprotein assembly. Little is known about Stau2 expression and function in mammalian oocytes during meiosis. Herein we report the sub-cellular distribution and function of Stau2 in mouse oocyte meiosis. Western blot analysis revealed high and stable expression of Stau2 in oocytes from germinal vesicle (GV) to metaphase II (MII). Immunofluorescence showed that Stau2 was evenly distributed in oocytes at GV stage, and assembled as filaments after germinal vesicle breakdown (GVBD), particularly, colocalized with spindle at MI and MII. Stau2 was disassembled when microtubules were disrupted with nocodazole, on the other hand, when MTs were stabilized with taxol, Stau2 was not colocalized with the stabilized microtubules, but aggregated around the chromosomes array, indicating Stau2 assembly and colocalization with microtubules require both microtubule integrity and its normal dynamics. During interphase and mitosis of BHK and MEF cells, Stau2 was not distributed on microtubules, but colocalized with cis-Golgi marker GM130, implying its association with Golgi complex but not the spindle in fully differentiated somatic cells. Specific morpholino oligo-mediated Stau2 knockdown disrupted spindle formation, chromosome alignment and microtubule-kinetochore attachment in oocytes. The majority oocytes were arrested at MI stage, with bright MAD1 at kinetochores, indicating activation of spindle assembly checkpoint (SAC). Some oocytes were stranded at telophase I (TI), implying suppressed first polar body extrution. Together these data demonstrate that Stau2 is required for spindle formation and timely meiotic progression in mouse oocytes.  相似文献   

7.
The spindle assembly checkpoint, SAC, is a surveillance mechanism to control the onset of anaphase during cell division. SAC prevents anaphase initiation until all chromosome pairs have achieved bipolar attachment and aligned at the metaphase plate of the spindle. In doing so, SAC is thought to be the key mechanism to prevent chromosome nondisjunction in mitosis and meiosis. We have recently demonstrated that Xenopus oocyte meiosis lacks SAC control. This prompted the question of whether Xenopus oocyte meiosis is particularly error-prone. In this study, we have karyotyped a total of 313 Xenopus eggs following in vitro oocyte maturation. We found no hyperploid egg, out of 204 metaphase II eggs with countable chromosome spreads. Therefore, chromosome nondisjunction is very rare during Xenopus oocyte meiosis I, despite the lack of SAC.  相似文献   

8.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

9.
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo‐like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo‐like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.  相似文献   

10.
Spindle formation is essential for stable inheritance of genetic material. Experiments in various systems indicate that Ran GTPase is crucial for meiotic and mitotic spindle assembly. Such an important role for Ran in chromatin-induced spindle assembly was initially demonstrated in Xenopus laevis egg extracts. However, the requirement of RanGTP in living meiotic cells has not been shown. In this study, we used a fluorescence resonance energy transfer probe to measure RanGTP-regulated release of importin beta. A RanGTP-regulated gradient was established during meiosis I and was centered on chromosomes throughout mouse meiotic maturation. Manipulating levels of RanGTP in mice and X. laevis oocytes did not inhibit assembly of functional meiosis I spindles. However, meiosis II spindle assembly did not tolerate changes in the level of RanGTP in both species. These findings suggest that a mechanism common to vertebrates promotes meiosis I spindle formation in the absence of chromatin-induced microtubule production and centriole-based microtubule organizing centers.  相似文献   

11.
Aurora A, meiosis and mitosis   总被引:6,自引:0,他引:6  
The Aurora family kinases are pivotal to the successful execution of cell division. Together they ensure the formation of a bipolar mitotic spindle, accurate segregation of chromosomes and the completion of cytokinesis. They are also attractive drug targets, being frequently deregulated in cancer and able to transform cells in vitro. In this review, we summarize current knowledge about the three family members, Aur-A, Aur-B and Aur-C. We then focus on Aur-A, its roles in mitotic progression, and its emerging roles in checkpoint control pathways. Aur-A activity can be controlled at several levels, including phosphorylation, ubiquitin-dependent proteolysis and interaction with both positive regulators, such as TPX2, and negative ones, like the tumor suppressor protein p53. In addition, work in Xenopus oocytes and early embryos has revealed a second role for Aur-A, directing the polyadenylation-dependent translation of specific mRNAs important for cell cycle progression. This function extends to post-mitotic neurons, and perhaps even to cycling somatic cells.  相似文献   

12.
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.  相似文献   

13.
Mitotic spindles assemble from two centrosomes, which are major microtubule‐organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an “inside‐out” mechanism, ending with establishment of the poles. We used HSET (kinesin‐14) as a tool to shift meiotic spindle assembly toward a mitotic “outside‐in” mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic‐like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique “inside‐out” mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.  相似文献   

14.
15.
16.
Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone late in anaphase. Ipl1p kinase activity increases at anaphase, and ipl1 mutants can stabilize fragile spindles. As the spindle disassembles, Ipl1p follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p substrates colocalize with Ipl1p to the spindle midzone, identifying additional proteins that may regulate spindle disassembly. We propose that Ipl1p regulates both the kinetochore and interpolar microtubule plus ends to regulate its various mitotic functions.  相似文献   

17.
18.
Currently, maternal aging in women, based on mouse models, is thought to raise oocyte aneuploidy rates, because chromosome cohesion deteriorates during prophase arrest, and Sgo2, a protector of centromeric cohesion, is lost. Here we show that the most common mouse strain, C57Bl6/J, is resistant to maternal aging, showing little increase in aneuploidy or Sgo2 loss. Instead it demonstrates significant kinetochore-associated loss in the spindle assembly checkpoint protein Mad2 and phosphorylated Aurora C, which is involved in microtubule–kinetochore error correction. Their loss affects the fidelity of bivalent segregation but only when spindle organization is impaired during oocyte maturation. These findings have an impact clinically regarding the handling of human oocytes ex vivo during assisted reproductive techniques and suggest there is a genetic basis to aneuploidy susceptibility.  相似文献   

19.
Meiotic spindles in males of higher Lepidotera are unusual in that the bulk of the spindle microtubules (MTs) ends about halfway between the equatorial plate and the centrosomes in metaphase. It appears worthwhile to determine how the MTs are nucleated, while their pole proximal ends are distant from the centrosomes. To this end, spermatocytes of Phragmatobia fuliginosa (Arctiidae), collected in the field, were double-labeled with antibodies to beta- and gamma-tubulin. The former antibody reveals the entire microtubular cytoskeleton, and the latter is directed against a newly-discovered tublin isoform that is prevalent in microtubule-organizing centers (MTOCs). The immunocytochemical work was supplemented by a fine structural analysis of MTOCs and spindles. Gamma-tubulin was clearly detected at the spindle poles, and prominent microtubular asters originated from these sites. Additionally, MT arrays at both sides of the equatorial plate in metaphase spermatocytes contained gamma-tubulin. The staining persisted in late anaphase, when kinetochore MTs are depolymerized. This indicates that at least nonkinetochore MTs contain gamma-tubulin. The analysis of ultrathin sections through spindles revealed large amounts of pericentriolar material at the spindles poles, in prometaphase through anaphase. The spindle MTs appeared as regular, straight elements in longitudinal sections. We assume that gamma-tubulin is located at the pole proximal ends of the MTs and/or is associated with the spindle MTs throughout their lengths. In order to distinguish between these possibilities, testes of Ephestia kuehniella (Pyralidae), a laboratory species, were cold-treated prior to double-labeling with antibodies to beta- and gamma-tubulin. The treatment was expected to depolymerize MTs. Astral MTs, which were nucleated end-on by gamma-tubulin-containing material, indeed depolymerized. In contrast, the gamma-tubulin-containing spindle MTs persisted. It is, therefore, conceivable that gamma-tubulin is associated with MTs throughout their lengths in male meiosis of Lepidoptera species. It is plausible that this association stabilizes the MTs against cold-induced disassembly. © 1996 Wiley-Liss, Inc.  相似文献   

20.
《Current biology : CB》2022,32(10):2281-2290.e4
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号