首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robo4 is a vascular-specific receptor that inhibits endothelial migration   总被引:20,自引:0,他引:20  
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.  相似文献   

2.
The angiogenic sprout has been compared to the growing axon, and indeed, many proteins direct pathfinding by both structures. The Roundabout (Robo) proteins are guidance receptors with well-established functions in the nervous system; however, their role in the mammalian vasculature remains ill defined. Here we show that an endothelial-specific Robo, Robo4, maintains vascular integrity. Activation of Robo4 by Slit2 inhibits vascular endothelial growth factor (VEGF)-165-induced migration, tube formation and permeability in vitro and VEGF-165-stimulated vascular leak in vivo by blocking Src family kinase activation. In mouse models of retinal and choroidal vascular disease, Slit2 inhibited angiogenesis and vascular leak, whereas deletion of Robo4 enhanced these pathologic processes. Our results define a previously unknown function for Robo receptors in stabilizing the vasculature and suggest that activating Robo4 may have broad therapeutic application in diseases characterized by excessive angiogenesis and/or vascular leak.  相似文献   

3.
Roundabout(Robo)蛋白是神经轴突导向分子家族Slit蛋白的单次跨膜受体,属于一种神经细胞粘附分子。Robo蛋白在神经系统已被确认具有重要轴突导向功能。近年来研究发现,血管新生的内皮细胞表面只特异性地表达Robo4,且Robo4对内皮细胞迁移、病理性血管生成和血管完整性都具有调节作用。缺血性脑血管病是人类致残甚至死亡的主要疾病之一,由于短暂或持续的脑血流减少而造成脑细胞损伤,因此,恢复脑血流、促进血管再生对脑功能恢复至关重要。Robo4对血管方面的作用为我们进一步研究及了解其在血管生成中的机制提供重要依据,也为缺血性脑血管病的治疗提供新的发展方向。  相似文献   

4.
Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature.  相似文献   

5.
Magic roundabout (Robo4) is the fourth recently identified member of the roundabout receptor family. Robo4 is predominantly expressed in embryonic or tumor vascular endothelium and is considered important for vascular development and as a candidate tumor endothelial marker. Much remains unknown about the Robo4 molecule, however, such as its ligands, structure, and the details of its function. Thus, we aimed to establish an expression and purification method for obtaining soluble recombinant human Robo4 (shRobo4) and mouse Robo4 (smRobo4) for use in Robo4 characterization studies. In this work, we expressed the extracellular domain of hRobo4 and mRobo4 in mammalian 293F cells and purified them by two-step chromatography. Based on gel-filtration chromatography and Blue Native polyacrylamide gel electrophoresis, these purified proteins exist as multimers. The shRobo4 and smRobo4 we obtained will be useful in advanced studies to determine the importance of multimerization, identify the ligands, and elucidate the ligand-receptor interactions and Robo4-mediated signaling. The results of these studies will help to elucidate the role of Robo4 in angiogenesis and perhaps eventually contribute to the development of novel vessel-targeting therapies.  相似文献   

6.
Neuronal clues to vascular guidance   总被引:3,自引:0,他引:3  
The development of the vertebrate vascular system into a highly ordered and stereotyped network requires precise control over the branching and growth of new vessels. Recent research has highlighted the important role of genetic programs in regulating vascular patterning and in particular has established a crucial role for families of molecules previously described in controlling neuronal guidance. Like neurons, new vessels are guided along the correct path by integrating attractive and repulsive cues from the external environment. This is achieved by specialised endothelial cells at the leading tip of vessel sprouts which express receptor proteins that couple extracellular guidance signals with the cytoskeletal changes necessary to alter cell direction. Here, we review the genetic and in vitro evidence implicating four families of ligand-receptor signalling systems common to both neuronal and vessel guidance: the Ephrins and Eph receptors; Semaphorins, Neuropilins and Plexin receptors; Netrin and Unc5 receptors; and Slits and Robo receptors.  相似文献   

7.
8.
Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit–Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4–heparan sulphate binding contributes to a Slit–Robo signalling mechanism more intricate than previously thought.  相似文献   

9.
Extending axons in the developing nervous system are guided in part by repulsive cues. Genetic analysis in Drosophila, reported in a companion to this paper, identifies the Slit protein as a candidate ligand for the repulsive guidance receptor Roundabout (Robo). Here we describe the characterization of three mammalian Slit homologs and show that the Drosophila Slit protein and at least one of the mammalian Slit proteins, Slit2, are proteolytically processed and show specific, high-affinity binding to Robo proteins. Furthermore, recombinant Slit2 can repel embryonic spinal motor axons in cell culture. These results support the hypothesis that Slit proteins have an evolutionarily conserved role in axon guidance as repulsive ligands for Robo receptors.  相似文献   

10.
Robo4 signaling in endothelial cells implies attraction guidance mechanisms   总被引:2,自引:0,他引:2  
Roundabouts (robo) are cell-surface receptors that mediate repulsive signaling mechanisms at the central nervous system midline. However, robos may also mediate attraction mechanisms in the context of vascular development. Here, we have performed structure-function analysis of roundabout4 (Robo4), the predominant robo expressed in embryonic zebrafish vasculature and found by gain of function approaches in vitro that Robo4 activates Cdc42 and Rac1 Rho GTPases in endothelial cells. Indeed, complementary robo4 gene knockdown approaches in zebrafish embryos show lower amounts of active Cdc42 and Rac1 and angioblasts isolated from these knockdown embryos search actively for directionality and guidance cues. Furthermore, Robo4-expressing endothelial cells show morphology and phenotype, characteristic of Rho GTPase activation. Taken together, this study suggests that Robo4 mediates attraction-signaling mechanisms through Rho GTPases in vertebrate vascular guidance.  相似文献   

11.
韩哲  杨雪松  耿建国  王丽京 《生命科学》2010,(10):1020-1024
分泌型糖蛋白Slit及其受体Roundabout(Robo)最初是作为一类重要的发育中神经元轴突导向分子而被发现的。目前为止对Slit/Robo信号对神经系统发育过程中轴突吸引或排斥的导向功能研究比较多,而对在发育中生长方式与其非常相似的血管发生过程中研究比较少。现有研究提示两者在发育过程中可能存在共同的信号调控机制,是Slit/Robo信号通路在血管新生中充当着重要的角色。该文就Slit/Robo信号对血管内皮细胞迁移的调节、对血管新生的作用及其可能介导的信号通路进行综述,以期进一步推动Slit/Robo信号通路在血管发生中的研究。  相似文献   

12.
Gonadotropin-releasing hormone (GnRH) neurons are born in the nasal placode and migrate along olfactory and vomeronasal axons to reach the forebrain and settle in the hypothalamus, where they control reproduction. The molecular cues that guide their migration have not been fully identified, but are thought to control either cell movement directly or the patterning of their axonal substrates. Using genetically altered mouse models we show that the migration of GnRH neurons is directly modulated by Slit2 and Robo3, members of the axon guidance Slit ligand and Robo receptor families. Mice lacking Slit2 or Robo3 have a reduced number of GnRH neurons in the forebrain, but a normal complement of their supporting axons, pointing to a direct role for these molecules in GnRH neuron migration.  相似文献   

13.
We have in recent years described several endothelial-specific genes that mediate cell migration. These include Robo4 (roundabout 4), CLEC14A (C-type lectin 14A) and ECSCR (endothelial cell-specific chemotaxis regulator) [formerly known as ECSM2 (endothelial cell-specific molecule 2)]. Loss of laminar shear stress induces Robo4 and CLEC14A expression and an endothelial 'tip cell' phenotype. Low shear stress is found not only at sites of vascular occlusion such as thrombosis and embolism, but also in the poorly structured vessels that populate solid tumours. The latter probably accounts for strong expression of Robo4 and CLEC14A on tumour vessels. The function of Robo4 has, in the past, aroused controversy. However, the recent identification of Unc5B as a Robo4 ligand has increased our understanding and we hypothesize that Robo4 function is context-dependent. ECSCR is another endothelial-specific protein that promotes filopodia formation and migration, but, in this case, expression is independent of shear stress. We discuss recent papers describing ECSCR, including intracellular signalling pathways, and briefly contrast these with signalling by Robo4.  相似文献   

14.
Antiangiogenic molecules exert a feedback control to restrain pathological angiogenesis, which includes physical binding or inhibition of angiogenic signaling in blood vessel endothelial cells. The latter is the case in which Slit2 ligand-dependent activation of the blood vessel endothelial cell receptor roundabout 4 (Robo4) occurs. In this study, we demonstrate that Robo4 receptors are upregulated following HSV infection of the eye on the majority of the new blood vessel endothelial cells that occur in the corneal stroma. However, expression levels of the ligand for Robo4 receptors, Slit2, was not significantly increased during the disease process, and the knockdown of Slit2 gene expression using lentiviral short hairpin RNAs had no effect on the extent of pathological angiogenesis. In contrast, providing additional Slit2 protein by subconjunctival administration resulted in significantly reduced angiogenesis. The Slit2 binding to Robo4 was shown to block the downstream vascular endothelial growth factor signaling molecules Arf 6 and Rac 1 and reduce the antiapoptotic molecule Bcl-xL in blood vessel endothelial cells. Our results indicate that augmenting the host Robo4/Slit2 system could provide a useful therapeutic approach to control pathological angiogenesis associated with HSV induced stromal keratitis.  相似文献   

15.
The Slit family of secreted proteins acts through the Roundabout (Robo) receptors to repel axonal migration during central nervous system development. Emerging evidence shows that Slit/Robo interactions also play a role in angiogenesis. The effect of Robo signaling on endothelial cells has been shown to be context-dependent. However, the role of Slit/Robo in pericytes has been largely unexplored. The aim of this study was to determine the effect of Slit2 on primary human pericytes and to address the underlying mechanisms, including the receptors potentially implicated. We demonstrate that both Robo1 and Robo4 are expressed by human pericytes. In the presence of their ligand Slit2, spontaneous and PDGF-induced migration of pericytes was impaired. This antimigratory activity of Slit-2 correlated with the inhibition of actin-based protrusive structures. Interestingly, human pericyte interaction with immobilized Slit2 was inhibited in the presence of anti-Robo1 and anti-Robo4 blocking antibodies, suggesting the implication of both receptors. These results add new insights into the role of Slit proteins during the angiogenic process that relies on the directional migration not only of endothelial cells but also of pericytes.  相似文献   

16.

Background

Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4), the predominant Robo in endothelial cells using small interfering RNA technology in vitro.

Results

Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells.

Conclusion

This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.  相似文献   

17.
Roundabout (Robo) family proteins are immunoglobulin-type surface receptors critical for cellular migration and pathway finding of neuronal axons. We have previously shown that Robo4 was specifically expressed in hematopoietic stem and progenitor cells and its high expression correlated with long-term repopulating (LTR) capacity. To reveal the physiological role of Robo4 in hematopoiesis, we examined the effects of Robo4 disruption on the function of hematopoietic stem cells (HSCs) and progenitors. In Robo4-deficient mice, basic hematological parameters including complete blood cell count and differentiation profile were not affected. In contrast to the previous report, HSC/hematopoietic progenitor (HPC) frequencies in the bone marrow (BM) were perfectly normal in Robo4−/− mice. Moreover, Robo4−/− HSCs were equally competitive as wild-type HSCs in transplantation assays and had normal long-term repopulating (LTR) capacity. Of note, the initial engraftment at 4-weeks after transplantation was slightly impaired by Robo4 ablation, suggesting a marginal defect in BM homing of Robo4−/− HSCs. In fact, homing efficiencies of HSCs/HPCs to the BM was significantly impaired in Robo4-deficient mice. On the other hand, granulocyte-colony stimulating factor-induced peripheral mobilization of HSCs was also impaired by Robo4 disruption. Lastly, marrow recovery from myelosuppressive stress was equally efficient in WT- and Robo4-mutant mice. These results clearly indicate that Robo4 plays a role in HSC trafficking such as BM homing and peripheral mobilization, but is not essential in the LTR and self-renewal capacity of HSCs.  相似文献   

18.
Of the many models to study vascular biology the avian embryo remains an informative and powerful model system that has provided important insights into endothelial cell recruitment, assembly and remodeling during development of the circulatory system. This review highlights several discoveries in the avian system that show how arterial patterning is regulated using the model of dorsal aortae development along the embryo midline during gastrulation and neurulation. These discoveries were made possible through spatially and temporally controlled gain-of-function experiments that provided direct evidence that BMP signaling plays a pivotal role in vascular recruitment, patterning and remodeling and that Notch-signaling recruits vascular precursor cells to the dorsal aortae. Importantly, BMP ligands are broadly expressed throughout embryos but BMP signaling activation region is spatially defined by precisely regulated expression of BMP antagonists. These discoveries provide insight into how signaling, both positive and negative, regulate vascular patterning. This review also illustrates similarities of early arterial patterning along the embryonic midline in amniotes both avian and mammalians including human, evolutionarily specialized from non-amniotes such as fish and frog.  相似文献   

19.
Tubular organs are essential for life, but lumen formation in nonepithelial tissues such as the vascular system or heart is poorly understood. Two studies in this issue (Medioni, C., M. Astier, M. Zmojdzian, K. Jagla, and M. Sémériva. 2008. J. Cell Biol. 182:249-261; Santiago-Martínez, E., N.H. Soplop, R. Patel, and S.G. Kramer. 2008. J. Cell Biol. 182:241-248) reveal unexpected roles for the Slit-Robo signaling system during Drosophila melanogaster heart morphogenesis. In cardioblasts, Slit and Robo modulate the cell shape changes and domains of E-cadherin-based adhesion that drive lumen formation. Furthermore, in contrast to the well-known paracrine role of Slit and Robo in guiding cell migrations, here Slit and Robo may act by autocrine signaling. In addition, the two groups demonstrate that heart lumen formation is even more distinct from typical epithelial tubulogenesis mechanisms because the heart lumen is bounded by membrane surfaces that have basal rather than apical attributes. As the D. melanogaster cardioblasts are thought to have significant evolutionary similarity to vertebrate endothelial and cardiac lineages, these findings are likely to provide insights into mechanisms of vertebrate heart and vascular morphogenesis.  相似文献   

20.
abstract

The objective of this study was to investigate whether human placental multipotent mesenchymal stromal cell (hPMSC)-derived Slit2 and endothelial cell Roundabout (Robo) receptors are involved in placental angiogenesis. The hPMSC-conditioned medium and human umbilical vein endothelial cells were studied for Slit2 and Robo receptor expression by immunoassay and RT-PCR. The effect of the conditioned medium of hPMSCs with or without Slit2 depletion on endothelial cells was investigated by in vitro angiogenesis using growth factor-reduced Matrigel. hPMSCs express Slit2 and both Robo1 and Robo4 are present in human umbilical vein endothelial cells. Human umbilical vein endothelial cells do not express Robo2 and Robo3. The hPMSC-conditioned medium and Slit2 recombinant protein significantly inhibit the endothelial cell migration, but not by the hPMSC-conditioned medium with Slit2 depletion. The hPMSC-conditioned medium and Slit2 significantly enhance endothelial tube formation with increased cumulated tube length, polygonal network number and vessel branching point number compared to endothelial cells alone. The tube formation is inhibited by the depletion of Slit2 from the conditioned medium, or following the expression of Robo1, Robo4, and both receptor knockdown using small interfering RNA. Furthermore, co-immunoprecipitation reveals Slit2 binds to Robo1 and Robo4. Robo1 interacts and forms a heterodimeric complex with Robo4. These results suggest the implication of both Robo receptors with Slit2 signaling, which is involved in endothelial cell angiogenesis. Slit2 in the conditioned medium of hPMSCs has functional effect on endothelial cells and may play a role in placental angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号