首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review. [BMB Reports 2014; 47(5): 249-255]  相似文献   

2.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

3.
Polo-like kinase-1 is a target of the DNA damage checkpoint   总被引:1,自引:0,他引:1  
Polo-like kinases (PLKs) have an important role in several stages of mitosis. They contribute to the activation of cyclin B/Cdc2 and are involved in centrosome maturation and bipolar spindle formation at the onset of mitosis. PLKs also control mitotic exit by regulating the anaphase-promoting complex (APC) and have been implicated in the temporal and spatial coordination of cytokinesis. Experiments in budding yeast have shown that the PLK Cdc5 may be controlled by the DNA damage checkpoint. Here we report the effects of DNA damage on Polo-like kinase-1 (Plk1) in a variety of human cell lines. We show that Plk1 is inhibited by DNA damage in G2 and in mitosis. In line with this, we show that DNA damage blocks mitotic exit. DNA damage does not inhibit the kinase activity of Plk1 mutants in which the conserved threonine residue in the T-loop has been changed to aspartic acid, suggesting that DNA damage interferes with the activation of Plk1. Significantly, expression of these mutants can override the G2 arrest induced by DNA damage. On the basis of these data we propose that Plk1 is an important target of the DNA damage checkpoint, enabling cell-cycle arrests at multiple points in G2 and mitosis.  相似文献   

4.
Living organisms have evolved various mechanisms to control their metabolism and response to various stresses, allowing them to survive and grow in different environments. In eukaryotes, the highly conserved mechanistic target of rapamycin (mTOR) signaling pathway integrates both intracellular and extracellular signals and serves as a central regulator of cellular metabolism, proliferation and survival. A growing body of evidence indicates that mTOR signaling is closely related to another cellular protection mechanism, the DNA damage response (DDR). Many factors important for the DDR are also involved in the mTOR pathway. In this review, we discuss how these two pathways communicate to ensure an efficient protection of the cell against metabolic and genotoxic stresses. We also describe how anticancer therapies benefit from simultaneous targeting of the DDR and mTOR pathways.  相似文献   

5.
DNA damage response pathway in radioadaptive response   总被引:16,自引:0,他引:16  
Radioadaptive response is a biological defense mechanism in which low-dose ionizing irradiation elicits cellular resistance to the genotoxic effects of subsequent irradiation. However, its molecular mechanism remains largely unknown. We previously demonstrated that the dose recognition and adaptive response could be mediated by a feedback signaling pathway involving protein kinase C (PKC), p38 mitogen activated protein kinase (p38MAPK) and phospholipase C (PLC). Further, to elucidate the downstream effector pathway, we studied the X-ray-induced adaptive response in cultured mouse and human cells with different genetic background relevant to the DNA damage response pathway, such as deficiencies in TP53, DNA-PKcs, ATM and FANCA genes. The results showed that p53 protein played a key role in the adaptive response while DNA-PKcs, ATM and FANCA were not responsible. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), mimicked the priming irradiation in that the inhibitor alone rendered the cells resistant against the induction of chromosome aberrations and apoptosis by the subsequent X-ray irradiation. The adaptive response, whether it was afforded by low-dose X-rays or wortmannin, occurred in parallel with the reduction of apoptotic cell death by challenging doses. The inhibitor of p38MAPK which blocks the adaptive response did not suppress apoptosis. These observations indicate that the adaptive response and apoptotic cell death constitute a complementary defense system via life-or-death decisions. The p53 has a pivotal role in channeling the radiation-induced DNA double-strand breaks (DSBs) into an adaptive legitimate repair pathway, where the signals are integrated into p53 by a circuitous PKC-p38MAPK-PLC damage sensing pathway, and hence turning off the signals to an alternative pathway to illegitimate repair and apoptosis. A possible molecular mechanism of adaptive response to low-dose ionizing irradiation has been discussed in relation to the repair of DSBs and implicated to the current controversial observations on the expression of adaptive response.  相似文献   

6.
Comment on: Kabacik S, et al. Cell Cycle 2011; 10:1152-61.  相似文献   

7.
Fanconi Anemia (FA) is a rare, inherited genomic instability disorder, caused by mutations in genes involved in the repair of interstrand DNA crosslinks (ICLs). The FA signaling network contains a unique nuclear protein complex that mediates the monoubiquitylation of the FANCD2 and FANCI heterodimer, and coordinates activities of the downstream DNA repair pathway including nucleotide excision repair, translesion synthesis, and homologous recombination. FA proteins act at different steps of ICL repair in sensing, recognition and processing of DNA lesions. The multi-protein network is tightly regulated by complex mechanisms, such as ubiquitination, phosphorylation, and degradation signals that are critical for the maintenance of genome integrity and suppressing tumorigenesis. Here, we discuss recent advances in our understanding of how the FA proteins participate in ICL repair and regulation of the FA signaling network that assures the safeguard of the genome. We further discuss the potential application of designing small molecule inhibitors that inhibit the FA pathway and are synthetic lethal with DNA repair enzymes that can be used for cancer therapeutics.  相似文献   

8.
Never-in-mitosis A related protein kinase 1 (Nek1) is involved early in a DNA damage sensing/repair pathway. We have previously shown that cells without functional Nek1 fail to activate the more distal kinases Chk1 and Chk2 and fail to arrest properly at G1/S or M-phase checkpoints in response to DNA damage. As a consequence, foci of damaged DNA in Nek1 null cells persist long after the instigating insult, and Nek1 null cells develop unstable chromosomes at a rate much higher than identically cultured wild-type cells. Here we show that Nek1 functions independently of canonical DNA damage responses requiring the PI3 kinase-like proteins ATM and ATR. Chemical inhibitors of ATM/ATR or mutation of the genes that encode them fail to alter the kinase activity of Nek1 or its localization to nuclear foci of DNA damage. Moreover ATM and ATR activities, including the localization of the proteins to DNA damage sites and phosphorylation of early DNA damage response substrates, are intact in Nek1−/− murine cells and in human cells with Nek1 expression silenced by siRNA. Our results demonstrate that Nek1 is important for proper checkpoint control and characterize for the first time a DNA damage response that does not directly involve one of the known upstream mediator kinases, ATM or ATR.Key words: checkpoint control, DNA damage response, Nek1, ATM, ATR  相似文献   

9.
The Fanconi anemia (FA) core complex plays a central role in the DNA damage response network involving breast cancer susceptibility gene products, BRCA1 and BRCA2. The complex consists of eight FA proteins, including a ubiquitin ligase (FANCL) and a DNA translocase (FANCM), and is essential for monoubiquitination of FANCD2 in response to DNA damage. Here, we report a novel component of this complex, termed FAAP100, which is essential for the stability of the core complex and directly interacts with FANCB and FANCL to form a stable subcomplex. Formation of this subcomplex protects each component from proteolytic degradation and also allows their coregulation by FANCA and FANCM during nuclear localization. Using siRNA depletion and gene knockout techniques, we show that FAAP100-deficient cells display hallmark features of FA cells, including defective FANCD2 monoubiquitination, hypersensitivity to DNA crosslinking agents, and genomic instability. Our study identifies FAAP100 as a new critical component of the FA-BRCA DNA damage response network.  相似文献   

10.
Luo K  Zhang H  Wang L  Yuan J  Lou Z 《The EMBO journal》2012,31(13):3008-3019
In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage.  相似文献   

11.
Never-in-mitosis A related protein kinase 1 (Nek1) is involved early in a DNA damage sensing/repair pathway. We have previously shown that cells without functional Nek1 fail to activate the more distal kinases Chk1 and Chk2 and fail to arrest properly at G1/S or M-phase checkpoints in response to DNA damage. As a consequence, foci of damaged DNA in Nek1 null cells persist long after the instigating insult, and Nek1 null cells develop unstable chromosomes at a rate much higher than identically cultured wild type cells. Here we show that Nek1 functions independently of canonical DNA damage responses requiring the PI3 kinase-like proteins ATM and ATR. Chemical inhibitors of ATM/ATR or mutation of the genes that encode them fail to alter the kinase activity of Nek1 or its localization to nuclear foci of DNA damage. Moreover ATM and ATR activities, including the localization of the proteins to DNA damage sites and phosphorylation of early DNA damage response substrates, are intact in Nek1 -/- murine cells and in human cells with Nek1 expression silenced by siRNA. Our results demonstrate that Nek1 is important for proper checkpoint control and characterize for the first time a DNA damage response that does not directly involve one of the known upstream mediator kinases, ATM or ATR.  相似文献   

12.
Protein phosphatase 1 (PP1), a major protein phosphatase important for a variety of cellular responses, is activated in response to ionizing irradiation (IR)-induced DNA damage. Here, we report that IR induces the rapid dissociation of PP1 from its regulatory subunit inhibitor-2 (I-2) and that the process requires ataxia-telangiectasia mutated (ATM), a protein kinase central to DNA damage responses. In response to IR, ATM phosphorylates I-2 on serine 43, leading to the dissociation of the PP1-I-2 complex and the activation of PP1. Furthermore, ATM-mediated I-2 phosphorylation results in the inhibition of the Aurora-B kinase, the down-regulation of histone H3 serine 10 phosphorylation, and the activation of the G(2)/M checkpoint. Collectively, the results of these studies demonstrate a novel pathway that links ATM, PP1, and I-2 in the cellular response to DNA damage.  相似文献   

13.
A.F. Alpi  K.J. Patel 《DNA Repair》2009,8(4):430-435
The hereditary genetic disorder Fanconi anemia (FA) belongs to the heterogeneous group of diseases associated with defective DNA damage repair. Recently, several reviews have discussed the FA pathway and its molecular players in the context of genome maintenance and tumor suppression mechanisms [H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446–457; W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins, Nat. Rev. Genet. 8 (2007) 735–748; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191–1198; K.J. Patel, Fanconi anemia and breast cancer susceptibility, Nat. Genet. 39 (2007) 142–143]. This review assesses the influence of post-translational modification by ubiquitin. We review and extract the key features of the enzymatic cascade required for the monoubiquitylation of the FANCD2/FANCI complex and attempt to include recent findings into a coherent mechanism. As this part of the FA pathway is still far from fully understood, we raise several points that must be addressed in future studies.  相似文献   

14.
The evolutionarily conserved Hus1 proteins function in DNA damage response pathways that serve to maintain genomic stability. Cells lacking mouse Hus1 are hypersensitive to certain genotoxins, and we have explored the molecular basis for this defect by examining how Hus1 inactivation affects genotoxin-induced signaling events. p53 accumulation and activation in response to DNA damage appeared normal in Hus1 null cells. Likewise, Hus1 was dispensable for genotoxin-induced Chk2 phosphorylation. In contrast, Chk1 phosphorylation after genotoxic stress was greatly reduced in the absence of Hus1, but was restored in Hus1 null fibroblasts complemented by infection with a Hus1-expressing retrovirus. These results demonstrate that mouse Hus1 is required for a specific subset of DNA damage signaling events and functions to promote genotoxin-induced Chk1 phosphorylation.  相似文献   

15.
Deregulation of the DNA damage response (DDR) pathway could compromise genomic integrity in normal cells and reduce cancer cell sensitivity to anticancer treatments. We found that intercellular contact stabilizes histone H2AX and γH2AX (H2AX phosphorylated on Ser-139) by up-regulating N/E-cadherin and γ-catenin. γ-catenin and its DNA-binding partner LEF-1 indirectly increase levels of H2AX by suppressing the promoter of the RNF8 ubiquitin ligase, which decreases levels of H2AX protein under conditions of low intercellular contact. Hyperphosphorylation of DDR proteins is induced by up-regulated H2AX. Constitutive apoptosis is caused in confluent cells but is not further induced by DNA damage. This is conceivably due to insufficient p53 activation because ChIP assay shows that its DNA binding ability is not induced in those cells. Together, our results illustrate a novel mechanism of the regulation of DDR proteins by the cadherin-catenin pathway.  相似文献   

16.
ID1, inhibitor of differentiation/DNA binding, plays an important role in cell proliferation, differentiation, and tumorigenesis. It has been shown that ID1 is de-regulated in multiple cancers and up-regulation of ID1 is correlated with high grades and poor prognosis of human cancers. In contrast, the p53 tumor suppressor was found to be mutated or inactivated in most human cancers and loss of p53 results in early onset of multiple cancers. Although the biological functions of the ID1 oncogene and the p53 tumor suppressor have been intensively investigated, little is known about the upstream regulators of ID1 and the cross-talk between ID1 and p53. Here, we showed that ID1 is down-regulated in cells treated with various DNA damage agents in a p53-dependent manner. Interestingly, we found that DEC1, which was recently identified as a p53 target and mediates p53-dependent cell cycle arrest and senescence, is capable of inhibiting ID1 expression. Conversely, we found that knockdown of DEC1 attenuates DNA damage-induced ID1 repression. In addition, we identified several potential DEC1 responsive elements in the proximal promoter region of the ID1 gene. Moreover, we showed that overexpression of ID1 or ID1', an isoform of ID1, promotes cell proliferation potentially through inhibition of p21 expression. Finally, we found that the extent of DNA damage-induced premature senescence was substantially decreased by overexpression of ID1 or ID1'. Taken together, our study suggests that p53 trans-repressional activity can be mediated by its own target DEC1 and ID1 is an effector of the p53-dependent DNA damage response pathway.  相似文献   

17.
18.
A pool of PTEN localizes to the nucleus. However, the exact mechanism of action of nuclear PTEN remains poorly understood. We have investigated PTEN’s role during DNA damage response. Here we report that PTEN undergoes chromatin translocation after DNA damage, and that its translocation is closely associated with its phosphorylation on S366/T370 but not on S380. Deletional analysis reveals that the C2 domain of PTEN is responsible for its nuclear translocation after exposure to genotoxin. Both casein kinase 2 and GSK3β are involved in the phosphorylation of the S366/T370 epitope, as well as PTEN’s association with chromatin after DNA damage. Significantly, PTEN specifically interacts with Rad52 and colocalizes with Rad52, as well as γH2AX, after genotoxic stress. Moreover, PTEN is involved in regulating Rad52 sumoylation. Combined, our studies strongly suggest that nuclear/chromatin PTEN mediates DNA damage repair through interacting with and modulating the activity of Rad52.  相似文献   

19.
The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.  相似文献   

20.
Mediator of DNA damage checkpoint 1 (MDC1) plays an important role in the DNA damage response (DDR). MDC1 functions as a mediator protein and binds multiple proteins involved in different aspects of the DDR. However, little is know about the organization of MDC1 complexes. Here we show that ataxia telangiectasia, mutated (ATM) phosphorylates MDC1 at Thr-98 following DNA damage, which promotes its oligomerization. Oligomerization of MDC1 is important for the accumulation of MDC1 complex at the sites of DNA damage. Mutation of Thr-98 (T98A) would abolish its oligomerization and result in a defect in DNA damage checkpoint activation and increased sensitivity to irradiation. Taken together, these results suggest that the oligomerization of MDC1 plays an important role in DDR and help understand the formation of proteins complexes at the sites of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号