首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The tumor microenvironment plays key roles in cancer biology, but its impact on the regulation of signaling pathway activity in cancer cells has not been systemically investigated. We designed an analytical strategy that allows differential analysis of signaling between cancer and stromal cells present in tumor xenografts. We used this approach to investigate how in vivo growth conditions and PI3K inhibitors regulate pathway activities in both cancer and stromal cell populations. We found that, despite inducing more modest changes in protein expression, in vivo growing conditions extensively rewired protein kinase networks in cancer cells. As a result, different sets of phosphorylation sites were modulated by PI3K inhibitors in cancer cells growing in tumors relative to when these cells were in culture. The p110δ PI3K-selective compound CAL-101 (Idelalisib) did not inhibit markers of PI3K activity in cancer or stromal cells; however, unexpectedly, it induced phosphorylation on SQ motifs in both subpopulations of tumor cells in vivo but not in vitro. Thus, the interaction between cancer cells and the stroma modulated the ability of PI3K inhibitors to induce the activation of apoptosis in solid tumors. Our study provides proof-of-principle of a proteomics workflow for measuring signaling specifically in cancer and stromal cells and for investigating how cancer biochemistry is modulated in vivo.Solid tumors contain a heterogeneous population of cells. Transformed epithelial cells recruit different types of somatic cells to the tumor microenvironment where they influence varying aspects of cancer biology. The role of heterotypic communication between normal stromal cells and transformed cancer cells is well established (1, 2). Different somatic cell types, including fibroblasts, epithelial cells, and cells of the immune system—all of which are found in tumors—promote cancer cell development by means of gap-junction intercellular communication, direct cell-to-cell contacts, and by the release of growth factors, enzymes, and cytokines that act on neighboring malignant cells (36).The tumor microenvironment determines the ability of cancer cells to survive in specific organs and their ability to proliferate and metastasize (79). Growth factors released from tumor-associated stromal cells also influence how cancer cells respond to drug administration (10). Therefore, the advancement of targeted cancer therapies requires an understanding of how the tumor microenvironment modulates the biochemistry of transformed cancer cells. In addition, targeting the tumor stroma is emerging as an intriguing concept for the development of anti-cancer therapies (11). It is therefore important to investigate specific effects of compounds in clinical development on stromal cells in addition to those exerted toward malignant cancer cells (12).Here we investigated the effects that changes in growing conditions from a two-dimensional cell culture to an in vivo three-dimensional tumor environment had in modulating protein and phosphoprotein expression in human cancer cells. For this, we used mass spectrometry (MS) to specifically measure cancer and stromal proteomes and phosphoproteomes within mouse tumor xenografts.We also investigated the effects that the pharmacological inhibitors of PI3K, namely GDC-0941 or CAL-101, would have on the phosphoproteomes of stromal cells relative to cancer cells in solid tumors. GDC-0941 is an inhibitor with specificity for class I PI3Ks, whereas CAL-101 specificity is restricted to the p110δ isoform of PI3K (13, 14), which in untransformed tissues is mainly found in leukocytes (15). The PI3K signaling pathway is often deregulated in different cancer types (16), including colorectal cancer (17), and both compounds used in this study are in different stages of clinical development (1820). PI3K signaling has also been implicated in mediating the effects that the microenvironment has on cancer cells (21).We found that in vivo growth conditions had profound effects on phosphoprotein expression, which was reflected on the phosphorylation sites modulated by PI3K inhibitors in vivo relative to in vitro and in their ability to induce apoptotic markers across these two cell culture conditions.  相似文献   

3.
Fms 样酪氨酸激酶 3(FLT3)是一种重要的Ⅲ型受体酪氨酸激酶,对造血细胞和淋巴细胞的增殖起关键作用,其突变以及过度表 达是造成多种恶性肿瘤的关键因素。通过外源性抑制剂阻断细胞增殖信号的传导来促使肿瘤细胞凋亡是当前治疗肿瘤的重要手段。FLT3 小 分子抑制剂作为一类重要的外源性受体酪氨酸激酶抑制剂已应用于多种恶性肿瘤的治疗并引起广泛关注。综述近 5 年来 FLT3 小分子抑制剂 的研究进展。  相似文献   

4.
5.
Pyruvate dehydrogenase kinase isoforms (PDKs 1–4) negatively regulate activity of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation. PDK isoforms are up-regulated in obesity, diabetes, heart failure, and cancer and are potential therapeutic targets for these important human diseases. Here, we employed a structure-guided design to convert a known Hsp90 inhibitor to a series of highly specific PDK inhibitors, based on structural conservation in the ATP-binding pocket. The key step involved the substitution of a carbonyl group in the parent compound with a sulfonyl in the PDK inhibitors. The final compound of this series, 2-[(2,4-dihydroxyphenyl)sulfonyl]isoindoline-4,6-diol, designated PS10, inhibits all four PDK isoforms with IC50 = 0.8 μm for PDK2. The administration of PS10 (70 mg/kg) to diet-induced obese mice significantly augments pyruvate dehydrogenase complex activity with reduced phosphorylation in different tissues. Prolonged PS10 treatments result in improved glucose tolerance and notably lessened hepatic steatosis in the mouse model. The results support the pharmacological approach of targeting PDK to control both glucose and fat levels in obesity and type 2 diabetes.  相似文献   

6.
Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.  相似文献   

7.
Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma.  相似文献   

8.
Our previous study had reported on the interaction of rotavirus NSP1 with cellular phosphoinositide 3-kinase (PI3K) during activation of the PI3K pathway (P. Bagchi et al., J. Virol. 84:6834–6845, 2010). In this study, we have analyzed the molecular mechanism behind this interaction. Results showed that this interaction is direct and that both α and β isomers of the PI3K regulatory subunit p85 and full-length NSP1 are important for this interaction, which results in efficient activation of the PI3K/Akt pathway during rotavirus infection.  相似文献   

9.
哺乳类细胞中周期蛋白依赖激酶抑制因子   总被引:5,自引:0,他引:5  
近两年,人们相继发现了一组能结合性抑制周期蛋白依赖激酶(CDKs)活性的蛋白因子──CDK抑制因子(CKIs)。它们分别是:p21、p16、p15、p27和CDIl。p21和p27有一定同源性,能抑制多种CDKs的活性;p16和p15则同源性更高,能特异地与CDK4、CDK6结合;CD11的结合特异性还有待进一步的研究。p21的表达受p53的正调控;TGF-β则上调p15的表达以及p27的抑制活性。以上表明CKls不仅是CDKs活性的调控者,而且还是抑癌因子与细胞周期调控之间的直接联系者。  相似文献   

10.
受体酪氨酸激酶c-Met即肝细胞生长因子HGF受体。HGF/c-Met信号通路在肿瘤形成、生长和转移过程中被频繁激活,因此, c-Met 已成为抗癌药物研究中一个重要靶标。重点介绍近年来基于c-Met通路的抗癌药物研究进展。  相似文献   

11.
12.
磷脂酰肌醇-3-激酶 (PI3K) 是一种胞内磷脂酰肌醇激酶,在介导细胞生长、发育、分裂、分化和凋亡等过程中发挥重要作用,因此 PI3K 抑制剂的开发已成为当前抗癌新药研究的热点之一。目前已有多个 PI3K 抑制剂进入临床研究阶段或已上市,其单用或与其他药物联 用的疗效和安全性有待进一步临床验证。综述 PI3K 抑制剂作为抗肿瘤药物的临床研究进展,为其进一步研究与应用提供参考。  相似文献   

13.
When the segments of azuki bean were incubated with 3-indoleaceticacid (IAA) plus gibberellin A3 (GA3), one isoform of  相似文献   

14.
15.
16.
17.
The recognition of bacterial lipoproteins by toll‐like receptor (TLR) 2 is pivotal for inflammation initiation and control in many bacterial infections. TLR2‐dependent signalling is currently believed to essentially require both adaptor proteins MyD88 (m yeloid d ifferentiation primary response gene 88) and Mal/TIRAP (M yD88‐a dapter‐l ike/TI R‐domain‐containing a daptor p rotein). TLR2‐dependent, but MyD88‐independent responses have not been described yet. We report here on a novel‐signalling pathway downstream of TLR2, which does not adhere to the established model. On stimulation of the TLR2/6 heterodimer with diacylated bacterial lipoproteins, Mal directly interacts with the regulatory subunit of phosphoinositide 3‐kinase (PI3K), p85α, in an inducible fashion. The Mal–p85α interaction drives PI3K‐dependent phosphorylation of Akt, phosphatidylinositol(3,4,5)P3 (PIP3) generation and macrophage polarization. MyD88 is not essential for PI3K activation and Akt phosphorylation; however, cooperates with Mal for PIP3 formation and accumulation at the leading edge. In contrast to TLR2/6, TLR2/1 does not require Mal or MyD88 for Akt phosphorylation. Hence, Mal specifically connects TLR2/6 to PI3K activation, PIP3 generation and macrophage polarization.  相似文献   

18.
c-Kit 是典型的Ⅲ型受体酪氨酸激酶,在肿瘤的发生发展以及侵袭、迁移和复发过程中起着十分重要的作用,是目前肿瘤分子靶向治疗的热门靶标之一,其抑制剂也成为抗肿瘤药物研究与开发的热点。简介c-Kit 激酶及其激活型突变与肿瘤发生发展的关系,着重综述近年来已上市和处于临床试验阶段的c-Kit 激酶抑制剂及其耐药机制研究。  相似文献   

19.
Specific Inhibitors of Ammonia Oxidation in Nitrosomonas   总被引:22,自引:6,他引:16       下载免费PDF全文
The following compounds or treatments have been shown to inhibit the oxidation of ammonia, but not the oxidation of hydroxylamine in cells of Nitrosomonas: (i) metal-binding agents such as allylthiourea or potassium cyanide; (ii) compounds such as SKF 525 which interact with cytochrome P-450 of mammalian microsomes; (iii) carbon monoxide; (iv) inhibitors of catalase, peroxidase, and amine oxidases such as thiosemicarbazide, ethylxanthate, and iproniazid, respectively; (v) uncouplers of oxidative phosphorylation such as m-chlorocarbonylcyanidephenylhydrazone; (vi) electron acceptors such as phenazine methosulfate; (vii) compounds such as methanol or N(2)O which react with free radicals; and (viii) illumination with 420 lux (5,000 foot candles) of light.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号