首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Distinguishing telomeres from DNA double strand breaks is critical for genome stability. In S. cerevisiae, the Cdc13 single-strand telomere binding protein is critical for protecting chromosome ends. The C-rich telomere strand is lost at high temperatures in cdc13-1 strains, leading to activation of the DNA damage checkpoint and cell inviability. Through a screen performed to identify activities involved in telomere C-strand loss, we identified two new rad24 alleles. Rad24 is an alternate Rfc1 subunit, functioning to load the 9-1-1 checkpoint clamp. In each rad24 allele, a transposon inserted within the RAD24 coding region leads to expression of different carboxyl-terminal portions of Rad24, deleting or truncating the amino-terminus. We show that an intact Rad24 amino-terminus is necessary for its checkpoint function. Interestingly, the initial cdc13-1 rad24-2 strains grew at 36Ã?Â?Å¡C, but the extent of suppression associated with rad24-2 weakened in serial backcrosses, and cdc13-1 segregants from these crosses showed a modest increase in temperature resistance. Moreover, while a RAD24 plasmid suppressed the checkpoint defect in the initial cdc13-1 rad24-2 strain, the temperature resistance was only partially suppressed. These data suggest that the TG1-3 amplification observed in this strain contributes to the suppression phenotype. By recreating the rad24-2 allele in a strain with normal telomeres, we find that, relative to the rad24-Ã?¢Ã?Â?†allele, rad24-2 increases the frequency of obtaining cdc13-1 cells capable of growth at high temperatures. Our hypothesis is that the Rad24-2 truncation protein affects telomere structure or recombination in a manner distinct from rad24-Ã?¢Ã?Â?†.  相似文献   

3.
4.
5.
《Autophagy》2013,9(1):82-84
Early-onset generalized dystonia (DYT1) is a debilitating neurological disorder characterized by involuntary movements and sustained muscle spasms. DYT1 dystonia has been associated with two mutations in torsinA that result in the deletion of a single glutamate residue (torsinA �”E) and six amino-acid residues (torsinA �”323-8). We recently revealed that torsinA, a peripheral membrane protein, which resides predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope (NE), is a long-lived protein whose turnover is mediated by basal autophagy. Dystonia-associated torsinA �”E and torsinA �”323-8 mutant proteins show enhanced retention in the NE and accelerated degradation by both the proteasome and autophagy. Our results raise the possibility that the monomeric form of torsinA mutant proteins is cleared by proteasome-mediated ER-associated degradation (ERAD), whereas the oligomeric and aggregated forms of torsinA mutant proteins are cleared by ER stress-induced autophagy. Our findings provide new insights into the pathogenic mechanism of torsinA �”E and torsinA �”323-8 mutations in dystonia and emphasize the need for a mechanistic understanding of the role of autophagy in protein quality control in the ER and NE compartments.

Addendum to: Giles LM, Chen J, Li L, Chin L-S. Dystonia-associated torsinA mutations cause premature degradation of torsinA protein and cell-type-specific mislocalization to the nuclear envelope. Hum Mol Genet 2008; 17:2712-22; PMID: 18552369; DOI: 10.1093/hmg/ddn173.  相似文献   

6.
The role of the mRNA-binding protein human antigen R (HuR) in stabilization and translation of AU-rich elements (ARE) containing mRNAs is well established. However, the trafficking of HuR and bound mRNA cargo, which comprises a fundamental requirement for the aforementioned HuR functions is only poorly understood. By administering different cytoskeletal inhibitors, we found that the protein kinase Cδ (PKCδ)-triggered accumulation of cytoplasmic HuR by Angiotensin II (AngII) is an actin-myosin driven process functionally relevant for stabilization of ARE-bearing mRNAs. Furthermore, we show that the AngII-induced recruitment of HuR and its bound mRNA from ribonucleoprotein particles to free and cytoskeleton bound polysomes strongly depended on an intact actomyosin cytoskeleton. In addition, HuR allocation to free and cytoskeletal bound polysomes is highly sensitive toward RNase and PPtase and structurally depends on serine 318 (S318) located within the C-terminal RNA recognition motif (RRM3). Conversely, the trafficking of the phosphomimetic HuRS318D, mimicking HuR phosphorylation at S318 by the PKCδ remained PPtase resistant. Co-immunoprecipitation experiments with truncated HuR proteins revealed that the stimulus-induced association of HuR with myosin IIA is strictly RNA dependent and mediated via the RRM3. Our data implicate a microfilament dependent transport of HuR, which is relevant for stimulus-induced targeting of ARE-bearing mRNAs from translational inactive ribonucleoprotein particles to polysomes.  相似文献   

7.
Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impalpha1 (importin alpha1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-alpha-difluoromethylornithine) repressed AMPK activity and reduced Impalpha1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impalpha1 levels. AMPK activation by overexpression of the AMPK gene increased Impalpha1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impalpha1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impalpha1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impalpha1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impalpha1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impalpha1 pathway.  相似文献   

8.
The expression of protein phosphatase 32 (PP32, ANP32A) is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1), a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C), but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK), causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR), while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy.  相似文献   

9.
10.
HuR is a ligand for nuclear mRNAs containing adenylate-uridylate rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins which then facilitate nuclear export of the complex. In the cytosol HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However within 30 min of exposure to the differentiation stimulus, the HuR content in the cytosol increases consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the C/EBPbeta message is a ligand for HuR and that the single binding site is an adenylate-uridylate rich element in the 3'-untranslated region.  相似文献   

11.
12.
AU-rich elements (AREs) located in the 3' UTRs of the messenger RNAs (mRNAs) of many mammalian early response genes promote rapid mRNA turnover. HuR, an RRM-containing RNA-binding protein, specifically interacts with AREs, stabilizing these mRNAs. HuR is primarily nucleoplasmic, but shuttles between the nucleus and the cytoplasm via a domain called HNS located between RRM2 and RRM3. We recently showed that HuR interacts with two protein ligands, pp32 and APRIL, which are also shuttling proteins, but rely on NES domains recognized by CRM1 for export. Here we show that heat shock induces increased association of HuR with pp32 and APRIL through protein-protein interactions and that these ligands partially colocalize with HuR in cytoplasmic foci. HuR associations with the hnRNP complex also increase, but through RNA links. CRM1 coimmunoprecipitates with HuR only after heat shock, and nuclear export of HuR becomes sensitive to leptomycin B, an inhibitor of CRM1. Export after heat shock requires the same domains of HuR (HNS and RRM3) that are essential for binding pp32 and APRIL. In situ hybridization and coimmunoprecipitation experiments show that LMB treatment blocks both hsp70 mRNA nuclear export and its cytoplasmic interaction with HuR after heat shock. Together, our results argue that upon heat shock, HuR switches its export pathway to that of its ligands pp32 and APRIL, which involves the nuclear export factor CRM1. HuR and its ligands may be instrumental in the nuclear export of heat-shock mRNAs.  相似文献   

13.
14.
Onconase (Onc), a ribonuclease from oocytes of Northern Leopard frogs (Rana pipiens) is cytostatic and cytotoxic to a variety of tumor lines in vitro, inhibits growth of tumors in animal in vivo models and enhances sensitivity of tumor cells to a number of other cytotoxic agents with diverse mechanism of action. In Phase III clinical trials Onc demonstrated significant efficacy in patients with malignant mesothelioma that failed prior chemotherapy. We previously postulated that the antitumor activity of Onc and the observed synergisms with other antitumor modalities at least in part may be mediated by targeting RNA interference (RNAi). In the present study we observed that the silencing of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene in human lung adenocarcinoma A549 cells by siRNA was effectively prevented by Onc. While transfection of cells with GAPDH siRNA reduced expression of this protein by nearly 70%, the expression was restored in the cells exposed to 0.8 Ã?Â?Ã?µM Onc for 48 or 72 h. The data thus provide evidence that one of the targets of Onc is siRNA, likely within the RNA-induced silencing complex (RISC). In light of the findings that microRNAs are involved in tumor pathogenesis as well as in enhancing cell resistance to anticancer therapy the present data may provide explanation for both, the antitumor Onc activity and its propensity to enhance effectiveness of cytotoxic drugs.  相似文献   

15.
TNF expression of macrophages is under stringent translational control that depends on the p38 MAPK/MK2 pathway and the AU–rich element (ARE) in the TNF mRNA. Here, we elucidate the molecular mechanism of phosphorylation-regulated translation of TNF. We demonstrate that translation of the TNF-precursor at the ER requires expression of the ARE–binding and -stabilizing factor human antigen R (HuR) together with either activity of the p38 MAPK/MK2 pathway or the absence of the ARE-binding and -destabilizing factor tristetraprolin (TTP). We show that phosphorylation of TTP by MK2 decreases its affinity to the ARE, inhibits its ability to replace HuR, and permits HuR-mediated initiation of translation of TNF mRNA. Since translation of TTP''s own mRNA is also regulated by this mechanism, an intrinsic feedback control of the inflammatory response is ensured. The phosphorylation-regulated TTP/HuR exchange at target mRNAs provides a reversible switch between unstable/non-translatable and stable/efficiently translated mRNAs.  相似文献   

16.
The activation of cytosolic phospholipase A(2)α (cPLA(2)α) plays an important role in initiating the inflammatory response. The regulation of cPLA(2)α mRNA turnover has been proposed to control cPLA(2)α gene expression under cytokine and growth factor stimulation. However, the detailed mechanism is still unknown. In this report, we have demonstrated that the cPLA(2)α mRNA stability was increased under IL-1β treatment in A549 cells. By using EMSAs, HuR was identified as binding with the cPLA(2)α mRNA 3'-UTR, and the binding region was located at nucleotides 2716-2807, a fragment containing AUUUA flanked by U-rich sequences. IL-1β treatment enhanced the association of cPLA(2)α mRNA with cytosolic HuR. The reduction of HuR expression by RNA interference technology inhibited IL-1β-induced cPLA(2)α mRNA and protein expression. Furthermore, blocking the p38 MAPK signaling pathway with SB203580 abolished the effect of IL-1β-induced cPLA(2)α gene expression. Phosphorylation at residue Thr-118 of HuR is crucial in regulating the interaction between HuR and its target mRNAs. Mutation of HuR Thr-118 reduced the association between HuR and cPLA(2)α mRNA under IL-1β treatment. This inhibitory effect was also observed in binding with COX-2 mRNA. This result indicated that p38 MAPK-mediated Thr-118 phosphorylation may play a key role in regulating the interaction of HuR with its target mRNAs in inflammation.  相似文献   

17.
RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm.  相似文献   

18.
HuR is a ligand for nuclear mRNAs containing adenylate-uridylate-rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins that then facilitate nuclear export of the complex. In the cytosol, HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However, within 30 min of exposure to the differentiation stimulus the HuR content in the cytosol increases, consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the CCAAT enhancer-binding protein beta (C/EBPbeta) message is a ligand for HuR. Within 2 h of initiation of the differentiation process, HuR complexes containing C/EBPbeta mRNA could be isolated from the cytosolic compartment. Importantly, the process appears to be highly selective, as cyclin D1, which contains a putative HuR binding site and is expressed on the same time frame as C/EBPbeta, was not found in the immunoprecipitated messenger ribonucleoprotein complexes. The proximity of this event to adipogenic stimuli and the importance of C/EBPbeta to the differentiation process have led us to hypothesize a role for HuR in the regulation of the onset of adipogenesis. In support of this hypothesis, small interfering RNA suppression of HuR protein content resulted in an inhibition of C/EBPbeta protein expression and an attenuation of the differentiation process.  相似文献   

19.
20.
Nuclear import of HuR, a shuttling RNA-binding protein, is associated with reduced stability of its target mRNAs. Increased function of the AMP-activated protein kinase (AMPK), an enzyme involved in responding to metabolic stress, was recently shown to reduce the cytoplasmic levels of HuR. Here, we provide evidence that importin alpha1, an adaptor protein involved in nuclear import, contributes to the nuclear import of HuR through two AMPK-modulated mechanisms. First, AMPK triggered the acetylation of importin alpha1 on Lys(22), a process dependent on the acetylase activity of p300. Second, AMPK phosphorylated importin alpha1 on Ser(105). Accordingly, expression of importin alpha1 proteins bearing K22R or S105A mutations failed to mediate the nuclear import of HuR in intact cells. Our results point to importin alpha1 as a critical downstream target of AMPK and key mediator of AMPK-triggered HuR nuclear import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号