首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast.  相似文献   

4.
5.
6.
7.
8.
We previously identified a mammalian Set1A complex analogous to the yeast Set1/COMPASS histone H3-Lys4 methyltransferase complex (Lee, J.-H., and Skalnik, D. G. (2005) J. Biol. Chem. 280, 41725-41731). Data base analysis indicates that human Set1A protein shares 39% identity with an uncharacterized SET domain protein, KIAA1076, hereafter denoted Set1B. Immunoprecipitation and mass spectrometry reveal that Set1B associates with a approximately 450 kDa complex that contains all five non-catalytic components of the Set1A complex, including CFP1, Rbbp5, Ash2, Wdr5, and Wdr82. These data reveal two human protein complexes that differ only in the identity of the catalytic histone methyltransferase. In vitro assays demonstrate that the Set1B complex is a histone methyltransferase that produces trimethylated histone H3 at Lys(4). Both Set1A and Set1B are widely expressed. Inducible expression of the carboxyl terminus of either Set1A or Set1B decreases steady-state levels of both endogenous Set1A and Set1B protein, but does not alter the expression of the non-catalytic components of the Set1 complexes. A 123-amino acid fragment upstream of the Set1A SET domain is necessary for interaction with CFP1, Ash2, Rbbp5, and Wdr5. This protein domain is also required to mediate feedback inhibition of Set1A and Set1B expression, which is a consequence of reduced Set1A and Set1B stability when not associated with the methyltransferase complex. Confocal microscopy reveals that Set1A and Set1B each localize to a largely non-overlapping set of euchromatic nuclear speckles, suggesting that Set1A and Set1B each bind to a unique set of target genes and thus make non-redundant contributions to the epigenetic control of chromatin structure and gene expression.  相似文献   

9.
10.
11.
12.
13.
14.
15.
BACKGROUND: Centromeric domains often consist of repetitive elements that are assembled in specialized chromatin, characterized by hypoacetylation of histones H3 and H4 and methylation of lysine 9 of histone H3 (K9-MeH3). Perturbation of this underacetylated state by transient treatment with histone deacetylase inhibitors leads to defective centromere function, correlating with delocalization of the heterochromatin protein Swi6/HP1. Likewise, deletion of the K9-MeH3 methyltransferase Clr4/Suvar39 causes defective chromosome segregation. Here, we create fission yeast strains retaining one histone H3 and H4 gene; the creation of these strains allows mutation of specific N-terminal tail residues and their role in centromeric silencing and chromosome stability to be investigated. RESULTS: Reduction of H3/H4 gene dosage to one-third does not affect cell viability or heterochromatin formation. Mutation of lysines 9 or 14 or serine 10 within the amino terminus of histone H3 impairs centromere function, leading to defective chromosome segregation and Swi6 delocalization. Surprisingly, silent centromeric chromatin does not require the conserved lysine 8 and 16 residues of histone H4. CONCLUSIONS: To date, mutation of conserved N-terminal residues in endogenous histone genes has only been performed in budding yeast, which lacks the Clr4/Suvar39 histone methyltransferase and Swi6/HP1. We demonstrate the importance of conserved residues within the histone H3 N terminus for the maintenance of centromeric heterochromatin in fission yeast. In sharp contrast, mutation of two conserved lysines within the histone H4 tail has no impact on the integrity of centromeric heterochromatin. Our data highlight the striking divergence between the histone tail requirements for the fission yeast and budding yeast silencing pathways.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号