首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tracheary elements (TEs) of the xylem serve as the water‐conducting vessels of the plant vascular system. To achieve this, TEs undergo secondary cell wall thickening and cell death, during which the cell contents are completely removed. Cell death of TEs is a typical example of developmental programmed cell death that has been suggested to be autophagic. However, little evidence of autophagy in TE differentiation has been provided. The present study demonstrates that the small GTP binding protein RabG3b plays a role in TE differentiation through its function in autophagy. Differentiating wild type TE cells were found to undergo autophagy in an Arabidopsis culture system. Both autophagy and TE formation were significantly stimulated by overexpression of a constitutively active mutant (RabG3bCA), and were inhibited in transgenic plants overexpressing a dominant negative mutant (RabG3bDN) or RabG3b RNAi (RabG3bRNAi), a brassinosteroid insensitive mutant bri1‐301, and an autophagy mutant atg5‐1. Taken together, our results suggest that autophagy occurs during TE differentiation, and that RabG3b, as a component of autophagy, regulates TE differentiation.  相似文献   

2.
An Arabidopsis small GTPase, RabG3b, was previously characterized as a component of autophagy and as a positive regulator for xylem development in Arabidopsis. In this work, we assessed whether RabG3b modulates xylem-associated traits in poplar in a similar way as in Arabidopsis. We generated transgenic poplars (Populus alba × Populus tremula var. glandulosa) overexpressing a constitutively active form of RabG3b (RabG3bCA) and performed a range of morphological, histochemical and molecular analyses to examine xylogenesis. RabG3bCA transgenic poplars showed increased stem growth due to enhanced xylem development. Autophagic structures were observed in differentiating xyelm cells undergoing programmed cell death (PCD) in wild-type poplar, and were more abundant in RabG3bCA transgenic poplar plants and cultured cells. Xylogenic activation was also accompanied by the expression of secondary wall-, PCD- and autophagy-related genes. Collectively, our results suggest that Arabidopsis RabG3b functions to regulate xylem growth through the activation of autophagy during wood formation in Populus, as does the same in Arabidopsis.  相似文献   

3.
In our previous proteomic analysis, we isolated a small GTPase RabG3b as a salicylic acid-responsive protein in Arabidopsis (Oh et al. in Plant Cell 17:2832–2847, 2005). Here, we constructed transgenic plants overexpressing wild-type (RabG3bOX), constitutively active (RabG3bCA), and dominant negative (RabG3bDN) forms of RabG3b for functional studies. The phenotypes of these transgenic plants were indistinguishable from wild-type plants under normal growth conditions. However, both RabG3bOX and RabG3bCA plants displayed unrestricted hypersensitive programmed cell death against a fungal toxin Fumonisin B1 and a fungal pathogen Alternaria brassicicola, whereas no major difference between wild-type and RabG3bDN plants was observed. In addition, RabG3bOX and RabG3bCA plants underwent accelerated leaf senescence compared to wild-type and RabG3bDN plants. These results suggest that RabG3b is a modulator for cell death progression during pathogen response and senescence process in plants. An erratum to this article can be found at  相似文献   

4.
Programmed cell death of tracheary elements as a paradigm in plants   总被引:26,自引:0,他引:26  
Plant development involves various programmed cell death (PCD) processes. Among them, cell death occurring during differentiation of procambium into tracheary elements (TEs), which are a major component of vessels or tracheids, has been studied extensively. Recent studies of PCD during TE differentiation mainly using an in vitro differentiation system of Zinnia have revealed that PCD of TEs is a plant-specific one in which the vacuole plays a central role. Furthermore, there are recent findings of several factors that may initiate PCD of TEs and that act at autonomous degradation of cell contents. Herein I summarize the present knowledge about cell death program during TE differentiation as an excellent example of PCD in plants.  相似文献   

5.

Background  

The xylem vascular system is composed of fused dead, hollow cells called tracheary elements (TEs) that originate through trans-differentiation of root and shoot cambium cells. TEs undergo autolysis as they differentiate and mature. The final stage of the formation of TEs in plants is the death of the involved cells, a process showing some similarities to programmed cell death (PCD) in animal systems. Plant proteases with functional similarity to proteases involved in mammalian apoptotic cell death (caspases) are suggested as an integral part of the core mechanism of most PCD responses in plants, but participation of plant caspase-like proteases in TE PCD has not yet been documented.  相似文献   

6.
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.  相似文献   

7.
We investigated the effect of elicitors on xylem differentiation and lignification using a Zinnia elegans xylogenic culture system. Water-soluble chitosan and a fungal elicitor derived from Botrytis cinerea were used as elicitors. Elicitor addition at the start of culturing inhibited tracheary element (TE) differentiation in a concentration-dependent manner, and 30 μg mL?1 of chitosan or 16.7 μg mL?1 of the fungal elicitor strikingly inhibited TE differentiation and lignification. Addition of chitosan (at 50 μg mL?1) or the fungal elicitor (at 16.7 μg mL?1) during the culturing period also inhibited TE differentiation without inhibiting cell division, except for immature TEs undergoing secondary wall thickening. Elicitor addition after immature TE appearance also caused the accumulation of an extracellular lignin-like substance. It appears that elicitor addition at the start of culturing inhibits the process by which dedifferentiated cells differentiate into xylem cell precursors. Elicitor addition during culturing also appears to inhibit the transition from xylem cell precursors to immature TEs, and induces xylem cell precursors or xylem parenchyma cells to produce an extracellular stress lignin-like substance.  相似文献   

8.
9.
Mechanically isolated mesophyll cells of Zinnia elegans differentiate into tracheary elements (TEs) when cultured in a medium containing adequate auxin and cytokinin. Differentiation in this culture system is relatively synchronous, rapid (occuring within 3 days of cell isolation) and efficient (with up to 65% of the mesophyll cells differentiating into TEs), and does not require prior mitosis. The Zinnia system has been used to investigate (a) cytological and ultrastructural changes occurring during TE differentiation, such as the reorganization of microtubules controlling secondary wall deposition, (b) the influences of calcium and of various plant hormones and antihormones on TE differentiation, and (c) biochemical changes during differentiation, including those occurring during secondary wall deposition, lignification and autolysis. This review summarizes experiments in which the Zinnia system has served as a model for the study of TE differentiation.  相似文献   

10.
Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. In higher plants, autophagy defects result in early senescence and excessive immunity-related programmed cell death (PCD) irrespective of nutrient conditions; however, the mechanisms by which cells die in the absence of autophagy have been unclear. Here, we demonstrate a conserved requirement for salicylic acid (SA) signaling for these phenomena in autophagy-defective mutants (atg mutants). The atg mutant phenotypes of accelerated PCD in senescence and immunity are SA signaling dependent but do not require intact jasmonic acid or ethylene signaling pathways. Application of an SA agonist induces the senescence/cell death phenotype in SA-deficient atg mutants but not in atg npr1 plants, suggesting that the cell death phenotypes in the atg mutants are dependent on the SA signal transducer NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1. We also show that autophagy is induced by the SA agonist. These findings imply that plant autophagy operates a novel negative feedback loop modulating SA signaling to negatively regulate senescence and immunity-related PCD.  相似文献   

11.

Background and Aims

Effective programmed xylogenesis is critical to the structural framework of the plant root system and its central role in the acquisition and long-distance transport of water and nutrients. The process of xylem differentiation in pioneer roots under field conditions is poorly understood. In this study it is hypothesized that xylogenesis, an example of developmental programmed cell death (PCD), in the roots of woody plants demonstrates a clearly defined sequence of events resulting in cell death. A comprehensive analysis was therefore undertaken to identify the stages of xylogenesis in pioneer roots from procambial cells to fully functional vessels with lignified cell walls and secondary cell wall thickenings.

Methods

Xylem differentiation was monitored in the pioneer roots of Populus trichocarpa at the cytological level using rhizotrons under field conditions. Detection and localization of the signalling molecule nitric oxide (NO) and hydrogen peroxide (H2O2) was undertaken and a detailed examination of nuclear changes during xylogenesis was conducted. In addition, analyses of the expression of genes involved in secondary cell wall synthesis were performed in situ.

Key Results

The primary event in initially differentiating tracheary elements (TEs) was a burst of NO in thin-walled cells, followed by H2O2 synthesis and the appearance of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei. The first changes in nuclear structure were observed in the early stages of xylogenesis of pioneer roots, prior to lignification; however, the nucleus was detectable under transmission electron microscopy in differentiating cells until the stage at which vacuole integrity was maintained, indicating that their degradation was slow and prolonged. The subsequent sequence of events involved secondary cell wall formation and autophagy. Potential gene markers from the cinnamyl alcohol dehydrogenase (CAD) gene family that were related to secondary wall synthesis were associated with primary xylogenesis, showing clear expression in cells that undergo differentiation into TEs and in the thin-walled cells adjacent to the xylem pole.

Conclusions

The early events of TE formation during pioneer root development are described, together with the timing of xylogenesis from signalling via NO, through secondary cell wall synthesis and autophagy events that are initiated long before lignification. This is the first work describing experiments conducted in planta on roots under field conditions demonstrating that the process of xylogenesis in vivo might be gradual and complex.  相似文献   

12.
Tracheary element (TE) differentiation is a typical example of programmed cell death (PCD) in higher plants, and maturation of TEs is completed by degradation of all cell contents. However, lignification of TEs progresses even after PCD. We investigated how and whence monolignols are supplied to TEs which have undergone PCD during differentiation of isolated Zinnia mesophyll cells into TEs. Higher densities of cell culture induced greater lignification of TEs. Whereas the continuous exchanging of culture medium suppressed lignification of TEs, further addition of coniferyl alcohol into the exchanging medium reduced the suppression of lignification. Analysis of the culture medium by HPLC and GC-MS showed that coniferyl alcohol, coniferaldehyde, and sinapyl alcohol accumulated in TE inductive culture. The concentration of coniferyl alcohol peaked at the beginning of secondary wall thickening, decreased rapidly during secondary wall thickening, then increased again. These results indicated that lignification on TEs progresses by supply of monolignols from not only TEs themselves but also surrounding xylem parenchyma-like cells through medium in vitro.  相似文献   

13.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   

14.
Nicotiana otophora contains Agrobacterium‐derived T‐DNA sequences introduced by horizontal gene transfer (Chen et al., 2014). Sixty‐nine contigs were assembled into four different cellular T‐DNAs (cT‐DNAs) totalling 83 kb. TC and TE result from two successive transformation events, each followed by duplication, yielding two TC and two TE inserts. TC is also found in other Nicotiana species, whereas TE is unique to N. otophora. Both cT‐DNA regions are partially duplicated inverted repeats. Analysis of the cT‐DNA divergence patterns allowed reconstruction of the evolution of the TC and TE regions. TC and TE carry 10 intact open reading frames. Three of these are TE‐6b genes, derived from a single 6b gene carried by the Agrobacterium strain which inserted TE in the N. otophora ancestor. 6b genes have so far only been found in Agrobacterium tumefaciens or Agrobacterium vitis T‐DNAs and strongly modify plant growth (Chen and Otten, 2016). The TE‐6b genes were expressed in Nicotiana tabacum under the constitutive 2 × 35S promoter. TE‐1‐6b‐R and TE‐2‐6b led to shorter plants, dark‐green leaves, a strong increase in leaf vein development and modified petiole wings. TE‐1‐6b‐L expression led to a similar phenotype, but in addition leaves show outgrowths at the margins, flowers were modified and plants became viviparous, i.e. embryos germinated in the capsules at an early stage of their development. Embryos could be rescued by culture in vitro. The TE‐6b phenotypes are very different from the earlier described 6b phenotypes and could provide new insight into the mode of action of the 6b genes.  相似文献   

15.
Sin SF  Chye ML 《Planta》2004,219(6):1010-1022
The heterologous expression of serine proteinase inhibitor II (PIN2) proteins confers insect resistance in transgenic plants, but little is known of their endogenous roles. We have cloned two cDNAs encoding Solanum americanum PIN2 proteins, SaPIN2a and SaPIN2b. SaPIN2a is highly expressed in stem, particularly in the phloem, suggesting it could possibly regulate proteolysis in the sieve elements. When SaPIN2a was expressed in transgenic lettuce, we observed an inhibition of endogenous trypsin- and chymotrypsin-like activities. Here, we demonstrate that both SaPIN2a and SaPIN2b are expressed in floral tissues that are destined to undergo developmental programmed cell death (PCD), suggesting possible endogenous roles in inhibiting trypsin- and chymotrypsin-like activities during flower development. Northern and western blot analyses revealed that SaPIN2a and SaPIN2b mRNAs and proteins show highest expression early in floral development. In situ hybridization analysis and immunolocalization on floral sections, localized SaPIN2a and SaPIN2b mRNAs and their proteins to tissues that would apparently undergo PCD: the ovules, the stylar transmitting tissue, the stigma and the vascular bundles. Detection of PCD in floral sections was achieved using terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. Examination of the mid-style before, and 1 day after, pollination revealed that high expression of SaPIN2a and SaPIN2b in the style was inversely correlated with PCD.Abbreviations PCD Programmed cell death - PIN2 Serine proteinase inhibitor II - SaPIN2a Solanum americanum serine proteinase inhibitor IIa - SaPIN2b Solanum americanum serine proteinase inhibitor IIb - TdT Terminal deoxynucleotidyl transferase - TEM Transmission electron microscopy - TUNEL Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling  相似文献   

16.
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD.In response to the constant attack by microbial pathogens, plants have developed defense mechanisms to protect themselves against harmful diseases caused by various pathogens. Plants primarily rely on two layers of innate immunity to cope with microbial pathogens (Jones and Dangl, 2006). The first layer of plant immunity, which is triggered by pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin, lipopolysaccharides, and fungal chitin, is designated PAMP-triggered immunity (PTI; Boller and He, 2009). Because pathogens have evolved to overcome PTI, plants have developed a second layer of immunity, referred to as effector-triggered immunity (ETI; Dodds and Rathjen, 2010). ETI depends on specific interactions between plant Resistance proteins and pathogen effectors and is often associated with a form of programmed cell death (PCD) termed the hypersensitive response (HR), which inhibits pathogen growth (Coll et al., 2011).Plants use PCD to regulate developmental and defense responses. In addition to pathogen attack, many abiotic stress factors such as heat and ozone exposure elicit PCD in plants (Hayward and Dinesh-Kumar, 2011). PCD also occurs during various developmental processes, including endosperm development, tracheary element (TE) differentiation, female gametophyte differentiation, leaf abscission, and senescence (Kuriyama and Fukuda, 2002; Gunawardena, 2008). Recently, plant PCD has been classified into two types, “autolytic” PCD and “nonautolytic” PCD, on the basis of the presence or absence of rapid cytoplasm clearance after tonoplast rupture, respectively (van Doorn et al., 2011). Autolytic PCD, which mainly occurs during plant development, falls under “autophagic” PCD in animals because it is associated with the accumulation of autophagy-related structures in the cytoplasm. Some forms of HR PCD classified as nonautolytic PCD in plants are accompanied by increased vacuolization, indicating the progress of autophagy, and therefore can be placed under autophagic PCD (Hara-Nishimura et al., 2005; Hatsugai et al., 2009).Autophagy is an intracellular process in which double membrane-bound autophagosomes enclose cytoplasmic components and damaged or toxic materials and target them to the vacuole or lysosome for degradation (Chung, 2011). In plants, autophagy plays important roles in the responses to nutrient starvation, senescence, and abiotic and biotic stresses (Liu et al., 2005; Xiong et al., 2005, 2007; Bassham, 2007; Hofius et al., 2009). Accumulating evidence indicates that autophagy regulates immune responses in both animals and plants. Autophagy is essential for the direct elimination of pathogens in mammalian systems (Levine et al., 2011). Invading bacteria and viruses are targeted to autophagosomes and then delivered to the lysosome for degradation in a process called xenophagy (Levine, 2005). In addition to its function in directly killing pathogens, xenophagic degradation can provide microbial antigens for major histocompatibility complex class II presentation to the innate and adaptive immune systems (Levine, 2005; Schmid and Münz, 2007). Furthermore, the human surface receptor CD46 was shown to directly induce autophagy through physical interaction with the autophagic machinery (Joubert et al., 2009). The role of autophagy in plant basal immunity to virulent pathogens has been determined (Patel and Dinesh-Kumar, 2008; Hofius et al., 2009; Lai et al., 2011; Lenz et al., 2011). Arabidopsis (Arabidopsis thaliana) plants defective in AUTOPHAGY-RELATED (ATG) genes exhibited enhanced susceptibility to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola, suggesting that the massive breakdown of cytoplasmic materials provides nutrients for the growth of necrotrophic pathogens or that fungal toxin-induced necrotic cell death is enhanced in atg mutants (Lai et al., 2011; Lenz et al., 2011). However, studies on the responses to the biotrophic pathogen Pseudomonas syringae pv tomato DC3000 (Pst DC3000) have yielded contradictory results. Whereas earlier studies reported that bacterial numbers significantly increased in ATG6-antisense (AS) and atg mutant plants (Patel and Dinesh-Kumar, 2008; Hofius et al., 2009), a recent study indicated that atg mutants exhibit increased resistance to Pst DC3000 (Lenz et al., 2011). Although these discrepancies remain to be resolved, salicylic acid (SA) levels and SA-dependent gene expression were both elevated in atg mutants, suggesting that autophagy may negatively regulate SA-associated plant immunity (Yoshimoto et al., 2009; Lenz et al., 2011). These findings indicate that the role of autophagy in plant immunity depends on the lifestyle of the invading pathogens (Lenz et al., 2011).Autophagy plays an important role in the regulation of HR PCD in plant innate immunity (Hayward and Dinesh-Kumar, 2011). Tobacco (Nicotiana tabacum) plants silenced for ATG6/Beclin1 and other ATG genes such as phosphatidylinositol 3-kinase (PI3K)/vacuolar protein sorting34 (VPS34), ATG3, and ATG7 underwent unrestricted HR PCD upon pathogen infection (Liu et al., 2005). ATG6-AS and atg5 mutant Arabidopsis plants also displayed unlimited HR PCD upon infection with the avirulent bacterium Pst DC3000 (AvrRpm1; Patel and Dinesh-Kumar, 2008; Yoshimoto et al., 2009). These studies suggest that autophagy is a “prosurvival” or “antideath” mechanism that negatively regulates HR PCD (Liu and Bassham, 2012). By contrast, a “prodeath” role has been suggested for autophagy in HR PCD regulation (Hofius et al., 2009). Pst DC3000 (AvrRps4)-induced and, to a lesser extent, Pst DC3000 (AvrRpm1)-induced HR PCD was suppressed in atg mutants, suggesting that autophagy plays a positive role and that autophagic cell death is involved in RPS4- and RPM1-mediated HR cell death.We previously showed that the small GTP-binding protein RabG3b, isolated from secretome analysis in Arabidopsis (Oh et al., 2005), functions as a component of autophagy and positively regulates TE differentiation via the activation of autophagic cell death (Kwon et al., 2010a, 2010b). Overexpression of a constitutively active RabG3b (RabG3bCA) in plants significantly increased autophagy during PCD associated with TE differentiation, thereby enhancing TE formation and xylem development. Transgenic poplar (Populus alba × Populus tremula var glandulosa) overexpressing Arabidopsis RabG3bCA was further generated, and these exhibited significant stimulation of xylem development together with autophagic activation, suggesting that RabG3b is a positive regulator of autophagy and xylem development in Populus spp. as well as Arabidopsis (Kwon et al., 2011). We also reported that RabG3b is involved in cell death associated with the fungal pathogen A. brassicicola and infection with the fungal toxin fumonisin B1 (FB1) as well as leaf senescence (Kwon et al., 2009). Here, we extend our work to determine the role of RabG3b and autophagy in immunity-associated HR PCD. We found that RabG3bCA transgenic plants accumulated a large number of autophagic structures and displayed accelerated, expanded cell death against a number of PCD inducers, such as FB1 and the bacterial pathogens Pst DC3000 (AvrRpm1) and Pst DC3000 (AvrRpt2). Our results suggest that RabG3b plays a positive role in immunity-associated HR PCD via the activation of autophagic cell death.  相似文献   

17.
18.
Autophagy is a highly conserved processing mechanism in eukaryotes whereby cytoplasmic components are engulfed in double-membrane vesicles called autophagosomes and are delivered into organelles such as lysosomes (mammal) or vacuoles (yeast/plant) for degradation and recycling of the resulting molecules. Isolation of yeastAUTOPHAGY (ATG) genes has facilitated the identification of correspondingArabidopsis ATG genes based on sequence similarity. Genetic and molecular analyses using knockout and/or knockdown mutants of those genes have unraveled the biological functions of autophagy during plant development, nutrient recycling, and environmental stress responses. Additional roles for autophagy have been suggested in the degradation of oxidized proteins during oxidative stress and the regulation of hypersensitive response (HR)-programmed cell death (PCD) during innate immunity. Our review summarizes knowledge about the structure and function of autophagic pathways andATG components, and the biological roles of autophagy in plants.  相似文献   

19.
采用树脂包埋技术,以AtRabD2b共抑制植株死亡发生茎段为实验材料,制备半薄切片和超薄切片,观察突变体茎段死亡的细胞学特征。结果表明:(1)共抑制植株茎细胞的死亡首先在表皮细胞层中发现,然后向切片圆周两侧以及内侧细胞蔓延。(2)共抑制植株茎细胞出现染色质边缘化、叶绿体内囊体片层膜数目减少、细胞器成分被液泡吞噬等异常现象。这些细胞学特征暗示共抑制植株茎段发生了细胞程序性死亡,由此推断AtRabD基因对拟南芥茎顶端细胞的生长有重要的维持作用。  相似文献   

20.
Programmed cell death (PCD) is a precise, genetically controlled cellular process with important roles in plant growth, development, and response to biotic and abiotic stress. However, the genetic mechanisms that control PCD in plants are unclear. Two Arabidopsis genes, DAL1 and DAL2 (for Drosophila DIAP1 like 1 and 2), encoding RING finger proteins with homology to DIAP1 were identified, and a series of experiments were performed to elucidate their roles in the regulation of PCD and disease resistance. Expression of DAL1 and DAL2 genes was induced in Arabidopsis plants after inoculation with virulent and avirulent strains of Pseudomonas syrinage pv. tomato (Pst) DC3000 or after infiltration with fumonisin B1 (FB1). Plants with mutations in the DAL1 and DAL2 genes displayed more severe disease after inoculation with an avirulent strain of Pst DC3000, but they showed similar disease severity as the wild-type plant after inoculation with a virulent strain of Pst DC3000. Significant accumulations of reactive oxygen species (ROS) and increased cell death were observed in the dal1 and dal2 mutant plants after inoculation with the avirulent strain of Pst DC3000. The dal mutant plants underwent extensive PCD upon infiltration of FB1 and displayed higher levels of ROS accumulation, callose deposition, and autofluorescence than the wild-type plants. Our data suggest that DAL1 and DAL2 may act as negative regulators of PCD in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号