首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 433 毫秒
1.
Much of developmental biology is concerned with the processes by which cells become committed to particular fates in a regulated fashion, whereas cell biology addresses, among other things, the variety of differentiated forms and functions that cells can acquire. One open question is how the regulators of the former process lead to attainment of the latter. “High-level” regulators of cell fate specification include the proneural factors, which drive cells to commit as precursors in the sensory nervous system. Recent research has concentrated on the gene expression events downstream of proneural factor function. Here we summarize this research and describe our own research that has provided clear links between a proneural factor, atonal and the cell biological program of ciliogenesis, which is a central aspect of sensory neuron differentiation.  相似文献   

2.
An early step in the development of the large mesothoracic bristles (macrochaetae) of Drosophila is the expression of the proneural genes of the achaete-scute complex (AS-C) in small groups of cells (proneural clusters) of the wing imaginal disc. This is followed by a much increased accumulation of AS-C proneural proteins in the cell that will give rise to the sensory organ, the SMC (sensory organ mother cell). This accumulation is driven by cis-regulatory sequences, SMC-specific enhancers, that permit self-stimulation of the achaete, scute and asense proneural genes. Negative interactions among the cells of the cluster, triggered by the proneural proteins and mediated by the Notch receptor (lateral inhibition), block this accumulation in most cluster cells, thereby limiting the number of SMCs. Here we show that the proneural proteins trigger, in addition, positive interactions among cells of the cluster that are mediated by the Epidermal growth factor receptor (EGFR) and the Ras/Raf pathway. These interactions, which we denominate 'lateral co-operation', are essential for macrochaetae SMC emergence. Activation of the EGFR/Ras pathway appears to promote proneural gene self-stimulation mediated by the SMC-specific enhancers. Excess EGFR signalling can overrule lateral inhibition and allow adjacent cells to become SMCs and sensory organs. Thus, the EGFR and Notch pathways act antagonistically in notum macrochaetae determination.  相似文献   

3.
4.
5.
6.
The nerve cell is a eumetazoan (cnidarians and bilaterians) synapomorphy [1]; this cell type is absent in sponges, a more ancient phyletic lineage. Here, we demonstrate that despite lacking neurons, the sponge Amphimedon queenslandica expresses the Notch-Delta signaling system and a proneural basic helix loop helix (bHLH) gene in a manner that resembles the conserved molecular mechanisms of primary neurogenesis in bilaterians. During Amphimedon development, a field of subepithelial cells expresses the Notch receptor, its ligand Delta, and a sponge bHLH gene, AmqbHLH1. Cells that migrate out of this field express AmqDelta1 and give rise to putative sensory cells that populate the larval epithelium. Phylogenetic analysis suggests that AmqbHLH1 is descendent from a single ancestral bHLH gene that later duplicated to produce the atonal/neurogenin-related bHLH gene families, which include most bilaterian proneural genes [2]. By way of functional studies in Xenopus and Drosophila, we demonstrate that AmqbHLH1 has a strong proneural activity in both species with properties displayed by both neurogenin and atonal genes. From these results, we infer that the bilaterian neurogenic circuit, comprising proneural atonal-related bHLH genes coupled with Notch-Delta signaling, was functional in the very first metazoans and was used to generate an ancient sensory cell type.  相似文献   

7.
The development of external sensory organs on the notum of Drosophila is promoted by the proneural genes achaete and scute. Their activity defines proneural cell clusters in the wing imaginal disc. Ectopic expression, under control of the GAL4 system, of the proneural gene lethal of scute (l'sc) causes the development of ectopic bristles. Persistent ectopic expression of l'sc is not sufficient to impose a neural fate on any given cell. This implies that mutual inhibition, mediated by the Notch signaling pathway, occurs among the cells of the ectopic proneural cluster. Consequently, the dominant, quantifiable phenotype associated with ectopic expression of l'sc is modified by mutations in genes known to be involved in neurogenesis. This phenotype has been utilized to screen for dominant enhancers and suppressors that modify the number of ectopic bristles. In this way, about 100 000 progeny of EMS or X-ray-treated flies have been analyzed to identify autosomal genes involved in regulation of the neural fate. In addition 1200 chromosomes carrying lethal P-element insertions were screened for modifiers. Besides mutations in genes expected to modify the phenotype, we have isolated mutations in six genes not known so far to be involved in neurogenesis.  相似文献   

8.
9.
Cells in the neurectoderm of Drosophila face a choice between neural and epidermal fates. On the notum of the adult fly, neural cells differentiate sensory bristles in a precise pattern. Evidence has accumulated that the bristle pattern arises from the spatial distribution of small groups of cells, proneural clusters, from each of which a single bristle will result. One class of genes, which includes the genes of the achaete-scute complex, is responsible for the correct positioning of the proneural clusters. The cells of a proneural cluster constitute an equivalence group, each of them having the potential to become a neural cell. Only one cell, however, will adopt the primary, dominant, neural fate. This cell is selected by means of cellular interactions between the members of the group, since if the dominant cell is removed, one of the remaining, epidermal, cells will switch fates and become neural. The dominant cell therefore prevents the other cells of the group from becoming neural by a phenomenon known as lateral inhibiton. They, then, adopt the secondary, epidermal, fate. A second class of genes, including the gene shaggy and the neurogenic genes mediate this process. There is some evidence that a proneural cluster is composed of a small number of cells, suggesting a contact-based mechanism of communication. The molecular nature of the protein products of the neurogenic genes is consistent with this idea.  相似文献   

10.
11.
12.
13.
Nolo R  Abbott LA  Bellen HJ 《Cell》2000,102(3):349-362
The senseless (sens) gene is required for proper development of most cell types of the embryonic and adult peripheral nervous system (PNS) of Drosophila. Sens is a nuclear protein with four Zn fingers that is expressed and required in the sensory organ precursors (SOP) for proper proneural gene expression. Ectopic expression of Sens in many ectodermal cells causes induction of PNS external sensory organ formation and is able to recreate an ectopic proneural field. Hence, sens is both necessary and sufficient for PNS development. Our data indicate that proneural genes activate sens expression. Sens is then in turn required to further activate and maintain proneural gene expression. This feedback mechanism is essential for selective enhancement and maintenance of proneural gene expression in the SOPs.  相似文献   

14.
15.
16.
We have examined the early pattern of sensory mother cells in embryos mutant for six different neurogenic loci. Our results show that the neurogenic loci are required to restrict the number of competent cells that will become sensory mother cells, but are not involved in controlling the localization or the position-dependent specification of competent cells. We conclude that these loci are involved in setting up a system of mutual inhibition, which transforms graded differences within the proneural clusters into an all-or-none difference between one cell, which becomes the sense organ progenitor cell, and the other cells, which remain epidermal.  相似文献   

17.
We describe here for the first time the development of mechanosensory organs in a chelicerate, the spider Cupiennius salei. It has been shown previously that the number of external sense organs increases with each moult. While stage 1 larvae do not have any external sensory structures, stage 2 larvae show a stereotyped pattern of touch sensitive ‘tactile hairs’ on their legs. We show that these mechanosensory organs develop during embryogenesis. In contrast to insects, groups of sensory precursors are recruited from the leg epithelium, rather than single sensory organ progenitors. The groups increase by proliferation, and neural cells delaminate from the cluster, which migrate away to occupy a position proximal to the accessory cells of the sense organ. In addition, we describe the development of putative internal sense organs, which do not differentiate until larval stage 2. We show by RNA interference that, similar to Drosophila, proneural genes are responsible for the formation and subtype identity of sensory organs. Furthermore, we demonstrate an additional function for proneural genes in the coordinated invagination and migration of neural cells during sensory organ formation in the spider.  相似文献   

18.
19.
20.
Establishment of a proneural field in the inner ear   总被引:1,自引:0,他引:1  
Hair-cells, supporting cells and sensory neurons are the main specialized cell-types responsible for mechanotransduction in the inner ear. They derive from precursors expressing proneural genes and recent data has underlined the importance of SoxB1 genes as upstream activators of proneural genes during cranial placode development. Here we review the steps of establishing a proneural field and propose several models for how early otic regionalization into a proneural territory is achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号