首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigenetic alterations occur in tumor-associated vessels in the tumor microenvironment. Methylation of the CYP24A1 gene promoter differs in endothelial cells isolated from tumors and non-tumor microenvironments in mice. The epigenetic makeup of endothelial cells of human tumor-associated vasculature is unknown due to difficulty of isolating endothelial cells populations from a heterogeneous tissue microenvironment. To ascertain CYP24A1 promoter methylation in tumor-associated endothelium, we utilized laser microdissection guided by CD31 immunohistochemistry to procure endothelial cells from human prostate tumor specimens. Prostate tissues were obtained following robotic radical prostatectomy from men with clinically localized prostate cancer. Adjacent histologically benign prostate tissues were used to compare endothelium from benign versus tumor microenvironments. Sodium bisulfite sequencing of CYP24A1 promoter region showed that the average CYP24A1 promoter methylation in the endothelium was 20% from the tumor microenvironment compared with 8.2% in the benign microenvironment (p < 0.05). A 2-fold to 17-fold increase in CYP24A1 promoter methylation was observed in the prostate tumor endothelium compared with the matched benign prostate endothelium in four patient samples, while CYP24A1 promoter methylation remained unchanged in two patient samples. In addition, there is no correlation of the level of CYP24A1 promoter methylation in prostate tumor-associated endothelium with that of epithelium/stroma. This study demonstrates that the CYP24A1 promoter is methylated in tumor-associated endothelium, indicating that epigenetic alterations in CYP24A1 may play a role in determining the phenotype of tumor-associated vasculature in the prostate tumor microenvironment.Key words: CYP24A1, DNA methylation, human prostate cancer, tumor endothelium, laser microdissection  相似文献   

2.
Calcitriol (1,25-dihydroxycholecalciferol), the most active form of vitamin D, has selective anti-proliferative effects on tumor-derived endothelial cells (TDEC) compared with Matrigel-derived endothelial cells (MDEC). Although both cell types have an intact vitamin D receptor-signaling axis, this study demonstrates that upon treatment with calcitriol, 24-hydroxylase (CYP24) mRNA, protein and enzymatic activity were markedly induced in MDEC in a time-dependent manner but not in TDEC. Furthermore, treatment of MDEC with a CYP24 small interfering RNA restored sensitivity to calcitriol. To investigate the lack of CYP24 induction in TDEC, we examined methylation patterns in the promoter regions of the CYP24 gene in these two cell types. We identified two putative CpG island regions located at the 5' end. Using methylation-specific PCR and bisulfite sequencing, we determined that these CpG islands were hypermethylated in TDEC but not in MDEC. These data may explain the recruitment of vitamin D receptor to the promoter region in MDEC but not TDEC, as revealed by chromatin immunoprecipitation analyses. Treatment of TDEC with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine restored calcitriol-mediated induction of CYP24, which led to loss of sensitivity to calcitriol growth inhibitory effects. CYP24 promoter hypermethylation was also observed in endothelial cells isolated from other tumors but not in endothelial cells isolated from normal mouse tissues. These observations indicate that the methylation status of the CYP24 promoter differs in endothelial cells isolated from different microenvironments (tumor versus normal) and that methylation silencing of CYP24 contributes to selective calcitriol-mediated growth inhibition in endothelial cells.  相似文献   

3.
The methylation status of four genes significant in prostate carcinogenesis p16, HIC1, N33 and GSTP1, were evaluated using quantitative methylationsensitive polymerase chain reaction. Tumor epithelia, tumor-associated stroma, normal epithelia, foci of PIN and benign prostate hyperplasia, and stroma adjacent to tumor tissues were isolated from whole-mount prostatectomy specimens of patients with localized prostate cancer by using laser capture microdissection. We found high levels of gene methylation in the tumor epithelium and tumor-associated stromal cells and some methylation in both hyperplastic epithelium and stromal cells in normal-appearing tissues located adjacent to tumors. Promoter methylation in the non-neoplastic cells of the prostate tumor microenvironment may play an important role in cancer development and progression. We examined the promoter methylation status of pl6, HIC1, N33 and GSTP1 in prostate biopsy fragments and prostate tissues after radical prostatectomy from patients with adenocarcinoma without laser capture microdissection. Methylation frequencies of all genes in tumor samples were considerably lower than frequencies in microdissected tumour samples (HIC1, 71 versus 89%; p16, 22 versus 78%; GSTP1, 32 versus 100%; N33, 20 versus 33%). The laser capture microdissection is required procedure in methylation studies taking into account multifocality and heterogenity of prostate cancer tissue.  相似文献   

4.
The methylation status of p16, HIC1, N33, and GSTP1, which are involved in prostate carcinogenesis, was studied in prostate tissue samples containing neoplasms. Malignant acini, prostatic intraepithelial neoplasia (PIN) and benign prostatic hyperplasia (BPH) foci, and stroma surrounding glandular structures of each type were detected in histological sections, using laser capture microdissection of prostate tissue. High levels of methylation were found in tumor epithelium and adjacent tumor-associated stromal cells. Epigenetic changes in the stroma are indicative of a major role of tumor microenvironment in cancer development and progression. The methylation status of p16, HIC1, N33, and GSTP1 was also assessed in prostate biopsy material and operative tumor samples without laser capture microdissection. The methylation frequencies of all genes in tumor samples were considerably lower than those in microdissected tumor samples (HIC1, 71% vs. 89%; p16, 22% vs. 78%; GSTP1, 32% vs. 100%; and N33, 20% vs. 33%, respectively). It was concluded that laser capture micro-dissection is required in molecular analysis of tumors of this type.  相似文献   

5.
Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness‐induced CCN1 activates β‐catenin nuclear translocation and signaling and that this contributes to upregulate N‐cadherin levels on the surface of the endothelium, in vitro. This facilitates N‐cadherin‐dependent cancer cell–endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness‐induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.  相似文献   

6.
7.
It was previously suggested that the 25-Vitamin-D3-1-hydroxylase (CYP27B1) is downregulated during human prostate tumor pathogenesis while the catabolic 25-Vitamin-D3-24-hydroxylase (CYP24) expression is increased. The latter could lead to resistance against the antimitotic, prodifferentiating activity of 1,25-dihydroxycholecalciferol. Our hypothesis was that regulation of Vitamin D hydroxylase expression during prostate tumor progression might be under epigenetic control. We demonstrate by real time RT-PCR that PNT-2 human normal prostate cells indeed possess CYP27B1, but are practically devoid of CYP24 mRNA, whereas DU-145 cancer cells have constitutive expression of CYP24, and very low levels of CYP27B1 mRNA. Treatment of PNT-2 cells with the methylation inhibitor 5-aza-2′-deoxycytidine together with the deacetylation inhibitor trichostatin A resulted in elevation of both CYP27B1 and CYP24 mRNA expression demonstrating that even in normal human prostate cells expression of Vitamin D hydroxylases may be under epigenetic control. In the DU-145 malignant cell line trichostatin A together with 5-aza-2′-deoxycytidine increased CYP27B1 mRNA expression to a smaller extent than in normal cells, however this resulted in a highly significant increase in 1-hydroxylation capacity. This demonstrates for the first time that synthesis of 1,25-dihydroxycholecalciferol in human prostate tumors could be reinitiated by epigenetic regulators.  相似文献   

8.
9.
10.
《Epigenetics》2013,8(10):1248-1256
DNA methylation of promoter regions is a common event in prostate cancer, one of the most common cancers in men worldwide. Because prior reports demonstrating that DNA methylation is important in prostate cancer studied a limited number of genes, we systematically quantified the DNA methylation status of 1505 CpG dinucleotides for 807 genes in 78 paraffin-embedded prostate cancer samples and three normal prostate samples. The ERG gene, commonly repressed in prostate cells in the absence of an oncogenic fusion to the TMPRSS2 gene, was one of the most commonly methylated genes, occurring in 74% of prostate cancer specimens. In an independent group of patient samples, we confirmed that ERG DNA methylation was common, occurring in 57% of specimens, and cancer-specific. The ERG promoter is marked by repressive chromatin marks mediated by polycomb proteins in both normal prostate cells and prostate cancer cells, which may explain ERG’s predisposition to DNA methylation and the fact that tumors with ERG DNA methylation were more methylated, in general. These results demonstrate that bead arrays offer a high-throughput method to discover novel genes with promoter DNA methylation such as ERG, whose measurement may improve our ability to more accurately detect prostate cancer.  相似文献   

11.
The microenvironment plays a significant role in human cancer progression. However, the role of the tumor microenvironment in the epigenetic control of genes critical to cancer progression remains unclear. As transient E-cadherin expression is central to many stages of neoplasia and is sensitive to regulation by the microenvironment, we have studied if microenvironmental control of E-cadherin expression is linked to transient epigenetic regulation of its promoter, contributing to the unstable and reversible expression of E-cadherin seen during tumor progression. We used 3D, bioengineered human tissue constructs that mimic the complexity of their in vivo counterparts, to show that the tumor microenvironment can direct the re-expression of E-cadherin through the reversal of methylation-mediated silencing of its promoter. This loss of DNA methylation results from the induction of homotypic cell-cell interactions as cells undergo tissue organization. E-cadherin re-expression is associated with multiple epigenetic changes including altered methylation of a small number of CpGs, specific histone modifications, and control of miR-148a expression. These epigenetic changes may drive the plasticity of E-cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion and metastasis. Thus, we suggest that epigenetic regulation is a mechanism through which tumor cell colonization of metastatic sites occurs as E-cadherin-expressing cells arise from E-cadherin-deficient cells.  相似文献   

12.
Summary Endothelial cells are a structural barrier and an active regulator of many bodily processes. Cytochrome P4501A (CYPIA) activity is induced in the endothelium of teleosts and mammals exposed to lipophilic xenobiotics, such as polycyclic aromatic hydrocarbons, and can have significant consequences for endothelial functions. We exposed cultures of characterized endothelial cells from the heart, kidney, and rete mirabile of the eel, Anguilla rostrata, to aryl hydrocarbon receptor (AhR) agonists. In heart endothelial cells, the maximum response (based on O-deethylation of 7-ethoxyresorufin to resorufin [EROD] activity) to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 113 pmol/mg/min, was at 1 nM TCDD and the peak response to β-napthoflavone (βNF), 135 pmol/mg/min, was at 3 μM βNF. The maximum response to TCDD in the kidney endothelial cells is 12 pmol/mg/min at 0.3 nM TCDD. The rete mirabile capillary endothelial cells responded minimally or not at all to exposure to TCDD and βNF. Both the heart and kidney endothelial cells (but not the rete mirabile capillary cells) have a low level of EROD activity (12.7 and 5.2 pmol/mg/min, respectively) in untreated or dimethylsulfoxide-treated cells. The robust response of the heart endothelial cells to induction and the lack of response in the rete mirabile capillary endothelial cells indicate that these cells are a good resource to use to investigate the physiological consequences of AhR agonist exposure and CYP1A induction in different areas of the vasculature.  相似文献   

13.
14.
There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.  相似文献   

15.
Calcitriol (1,25-dihydroxycholecalciferol), the active form of Vitamin D, is anti-proliferative in tumor cells and tumor-derived endothelial cells (TDEC). However, endothelial cells isolated from normal tissues as cell lines or freshly isolated cells or from implanted Matrigel plugs (MDEC) are relatively resistant. Both TDEC and MDEC express similar amounts of Vitamin D receptor (VDR) protein. Although the VDR from TDEC has higher binding affinity for calcitriol than those from MDEC, VDR in both cell types translocates to the nucleus and transactivates the 24-hydroxylase promoter-luciferase construct. Calcitriol selectively inhibits the growth of TDEC but not MDEC by inducing G(0)/G(1) cell cycle arrest and by promoting apoptosis. This selectivity appears to be related to 24-hydroxylase (CYP24) expression. Calcitriol significantly induced CYP24 expression in MDEC but not in TDEC and inhibition of CYP24 activity in MDEC restores their sensitivity to calcitriol. These findings indicate that the induction of CYP24 expression differs in endothelial cells isolated from different microenvironments (TDEC versus MDEC) and that this distinction contributes to selective calcitriol-mediated growth inhibition in these cell types.  相似文献   

16.
《Epigenetics》2013,8(4):477-482
DNA methylation and polycomb proteins are well-known mediators of epigenetic silencing in mammalian cells. Usually described as mutually exclusive, this statement is today controversial and recent in vitro studies suggest the co-existence of both repressor systems. We addressed this issue in the study of Retinoic Acid Receptor β (RARβ), a tumor suppressor gene frequently silenced in prostate cancer. We found that the RARβ promoter is hypermethylated in all studied prostate tumors and methylation levels are positively correlated with H3K27me3 enrichments. Thus, by using bisulfite conversion and pyrosequencing of immunoprecipitated H3K27me3 chromatin, we demonstrated that DNA methylation and polycomb repression co-exist in vivo at this locus. We found this repressive association in 6/6 patient tumor samples of different Gleason score, suggesting a strong interplay of DNA methylation and EZH2 to silence RARβ during prostate tumorigenesis.  相似文献   

17.
《Epigenetics》2013,8(12):1425-1435
Accurately identifying women at increased risk of developing breast cancer will provide greater opportunity for early detection and prevention. DNA promoter methylation is a promising biomarker for assessing breast cancer risk. Breast milk contains large numbers of exfoliated epithelial cells that are ideal for methylation analyses. Exfoliated epithelial cells were isolated from the milk obtained from each breast of 134 women with a history of a non-proliferative benign breast biopsy (Biopsy Group). Promoter methylation of three tumor suppressor genes, RASSF1, SFRP1 and GSTP1, was assessed by pyrosequencing of bisulfite-modified DNA. Methylation scores from the milk of the 134 women in the Biopsy Group were compared to scores from 102 women for whom a breast biopsy was not a recruitment requirement (Reference Group). Mean methylation scores for RASSF1 and GSTP1 were significantly higher in the Biopsy than in the Reference Group. For all three genes the percentage of outlier scores was greater in the Biopsy than in the Reference Group but reached statistical significance only for GSTP1. A comparison between the biopsied and non-biopsied breasts of the Biopsy Group revealed higher mean methylation and a greater number of outlier scores in the biopsied breast for both SFRP1 and RASSF1, but not for GSTP1. This is the first evidence of CpG island methylation in tumor suppressor genes of women who may be at increased risk of developing breast cancer based on having had a prior breast biopsy.  相似文献   

18.
Reduced fetal growth associates with endothelial dysfunction and cardiovascular risk in both young and adult offspring and the nitric oxide (NO) system has been implicated in these effects. Epigenetic processes are likely to underlie such effects, but there is to date no evidence that endothelial dysfunction in early life results from epigenetic processes on key genes in the NO system, such as NOS3 (eNOS) and ARG2 (arginase-2). We determined basal DNA methylation status in NOS3 and ARG2 promoters, and DNA methyltransferase 1 (DNMT1) effect on eNOS and arginase-2 expression using human endothelial cells isolated from umbilical arteries (HUAEC) and veins (HUVEC) from control and intrauterine growth restricted (IUGR) fetuses. Compared with cells from control pregnancies, eNOS protein and mRNA levels were increased in HUAEC, but decreased in HUVEC, from IUGR, while arginase-2 levels were increased in IUGR-HUVEC. The NOS3 promoter showed a decrease in DNA methylation at CpG -352 in IUGR-HUAEC, and an increase in IUGR-HUVEC, when compared with control cells. Methylation in the hypoxia response element of the NOS3 promoter was increased in IUGR-HUAEC and decreased in HUVEC. Methylation in the AGR2 promoter in IUGR-HUVEC was decreased in a putative HRE, and without changes in IUGR-HUAEC. Silencing of DNMT1 expression normalized eNOS expression in IUGR endothelial cells, and restored the normal response to hypoxia in HUVEC, without effects on arginase-2. This data suggest that eNOS expression in IUGR-derived endothelial cells is programmed by altered DNA methylation, and can be reversed by transient silencing of the DNA methylation machinery.  相似文献   

19.
Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.  相似文献   

20.
BACKGROUND: Systemic administration of non-viral gene therapy provides better access to tumors than local administration. Development of a promoter that restricts expression of cytotoxic proteins to the tumor vasculature will increase the safety of the system by minimizing expression in the non-dividing endothelial cells of the vasculature of non-target tissues. METHODS: Cell cycle promoters were tested for selective expression in dividing cells vs. non-dividing cells in vitro and promoter strength was compared to the cytomegalovirus (CMV) promoter. Successful promoter candidates were tested in vivo using two proliferating endothelium mouse models. Ovarectomized mice were injected with estradiol prior to lipoplex administration and expression levels were measured in the lungs and uterus 4 days after administration. The second model was a subcutaneous tumor model and expression levels were measured in the lungs and tumors. For both animal models, expression levels from the proliferating endothelium promoter were compared to that obtained from a CMV promoter. RESULTS: The results showed that the Cdc6 promoter yielded higher expression in proliferating vs. non-proliferating cells. Secondly, promoter strength could be selectively increased in endothelial cells by the addition of a multimerized endothelin enhancer (ET) to the Cdc6 promoter. Thirdly, comparison of expression levels in the lungs vs. uterus in the ovarectomized mouse model and lungs vs. tumor in the mouse tumor model showed expression was much higher in the uterus and the tumor than in the lungs for the ET/Cdc6 promoter, and expression levels were comparable to that of the CMV promoter in the hypervascularized tissues. CONCLUSIONS: These results demonstrate that the combination of the endothelin enhancer with the Cdc6 promoter yields selective expression in proliferating endothelium and can be used to express cytotoxic proteins to treat vascularized tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号