共查询到20条相似文献,搜索用时 15 毫秒
1.
There is general agreement that many cancers are associated with aberrant phosphotyrosine signaling, which can be caused by the inappropriate activities of tyrosine kinases or tyrosine phosphatases. Furthermore, incorrect activation of signaling pathways has been often linked to changes in adhesion events mediated by cell surface receptors. Among these receptors, receptor protein tyrosine phosphatases (RPTPs) both antagonize tyrosine kinases as well as engage extracellular ligands. A recent wealth of data on this intriguing family indicates that its members can fulfill either tumor suppressing or oncogenic roles. The interpretation of these results at a molecular level has been greatly facilitated by the recent availability of structural information on the extra- and intracellular regions of RPTPs. These structures provide a molecular framework to understand how alterations in extracellular interactions can inactivate RPTPs in cancers or why the overexpression of certain RPTPs may also participate in tumor progression. 相似文献
2.
Protein tyrosine phosphatases in higher plants 总被引:3,自引:0,他引:3
3.
Reversible phosphorylation on tyrosine residues is an extremely rapid and powerful posttranslational modification that is
used in signalling pathways for the regulation of cell growth and differentiation. Over the past several years an impressive
number of receptor-like protein tyrosine phosphatase (RPTPase) family members have been identified by molecular cloning, and
undoubtedly many more will follow. This review provides an overview of the molecular data that are available for the currently
identified RPTPases and discusses their possible biological implications.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
4.
Changes in protein tyrosine phosphorylation are an essential aspect of egg activation after fertilization. Such changes result from the net contributions of both tyrosine kinases and phosphatases (PTP). This study was conducted to determine what role(s) PTP may have in egg activation. We identified four novel PTP in Chaetopterus pergamentaceus oocytes, cpPTPNT6, cpPTPNT7, cpPTPR2B, and cpPTPR2A, that have significant homology to, respectively, human PTPsigma, -rho, -D2 and -BAS. The first two are cytosolic and the latter two are transmembrane. Several PTP inhibitors were tested to see if they would affect Chaetopterus pergamentaceus fertilization. Eggs treated with beta-bromo-4-hydroxyacetophenone (PTP inhibitor 1) exhibited microvillar elongation, which is a sign of cortical changes resulting from activation. Those treated with Na3VO4 underwent full parthenogenetic activation, including polar body formation and pseudocleavage and did so independently of extracellular Ca2+, which is required for the Ca2+ oscillations that initiate development after fertilization. Fluorescence microscopy identified phosphotyrosine-containing proteins in the cortex and around the nucleus of vanadate-activated eggs, whereas in fertilized eggs they were concentrated only in the cortex. Immunoblots of vanadate-activated and fertilized eggs showed tyrosine hyperphosphorylation of approximately 140 kDa protein. These results suggest that PTP most likely maintain the egg in an inactive state by dephosphorylation of proteins independent of the Ca2+ oscillations in the activation process. 相似文献
5.
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis. 相似文献
6.
Kathleen Molyneaux Christian Laggner Susann M. Brady-Kalnay 《Journal of cellular and molecular medicine》2023,27(22):3553-3564
Approximately 40% of people will get cancer in their lifetime in the US, and 20% are predicted to die from the condition when it is invasive and metastatic. Targeted screening for drugs that interact with proteins that drive cancer cell growth and migration can lead to new therapies. We screened molecular libraries with the AtomNet® AI-based drug design tool to identify compounds predicted to interact with the cytoplasmic domain of protein tyrosine phosphatase mu. Protein tyrosine phosphatase mu (PTPmu) is proteolytically downregulated in cancers such as glioblastoma generating fragments that stimulate cell survival and migration. Aberrant nuclear localization of PTPmu intracellular fragments drives cancer progression, so we targeted a predicted drug-binding site between the two cytoplasmic phosphatase domains we termed a D2 binding pocket. The function of the D2 domain is controversial with various proposed regulatory functions, making the D2 domain an attractive target for the development of allosteric drugs. Seventy-five of the best-scoring and chemically diverse computational hits predicted to interact with the D2 binding pocket were screened for effects on tumour cell motility and growth in 3D culture as well as in a direct assay for PTPmu-dependent adhesion. We identified two high-priority hits that inhibited the migration and glioma cell sphere formation of multiple glioma tumour cell lines as well as aggregation. We also identified one activator of PTPmu-dependent aggregation, which was able to stimulate cell migration. We propose that the PTPmu D2 binding pocket represents a novel regulatory site and that inhibitors targeting this region may have therapeutic potential for treating cancer. 相似文献
7.
糖尿病是由于胰岛素分泌不足或胰岛素抵抗引起的以血糖升高为特征的代谢性疾病。有研究发现一些蛋白酪氨酸磷酸酶(proteintyrosine phosphatases,PTP)在胰岛素受体信号途径、胰岛素分泌和胰腺β细胞受自身免疫细胞攻击等生理或病理过程中起重要作用。以PTP1B、TCPTP和LYP为代表的PTP通过将底物去磷酸化,拮抗激酶催化的磷酸化反应,在一些信号通路中起到负相调节的作用。在糖尿病患者中发现这些PTP的单核苷酸突变使蛋白表达增加或酶活力增强,因而施用这些潜在靶蛋白的小分子抑制剂成为治疗1型或2型糖尿病可能的新疗法。而PTPIA-2/IA-2β的胞内磷酸酶结构域被发现是大量1型糖尿病患者的自身免疫原,因此可针对PTPIA-2/IA-2β发展早期诊断并预防1型糖尿病的试剂盒。 相似文献
8.
Receptor-protein tyrosine phosphatases (RPTPs), like receptor tyrosine kinases, regulate neuronal differentiation. While receptor tyrosine kinases are dimerized and activated by extracellular ligands, the extent to which RPTPs dimerize, and the effects of dimerization on phosphatase activity, are poorly understood. We have examined a neuronal type III RPTP, PTPRO; we find that PTPRO can form dimers in living cells, and that disulfide linkages in PTPROs intracellular domain likely regulate dimerization. Dimerization of PTPROs transmembrane and intracellular domains, achieved by ligand binding to a chimeric fusion protein, decreases activity toward artificial peptides and toward a putative substrate, tropomyosin-related kinase C (TrkC). Dephosphorylation of TrkC by PTPRO may be physiologically relevant, as it is efficient, and TrkC and PTPRO can be co-precipitated from transfected cells. Inhibition of PTPROs phosphatase activity by dimerization is interesting, as dimerization of a related RPTP, CD148/PTPRJ, increases activity. Thus, our results suggest a complex relationship between dimerization and activity in type III RPTPs. 相似文献
9.
《Cell communication & adhesion》2013,20(2):34-47
AbstractReceptor protein tyrosine phosphatases (RPTPs) have cell adhesion molecule–like extracellular domains coupled to cytoplasmic tyrosine phosphatase domains. PTPμ is the prototypical member of the type IIb subfamily of RPTPs, which includes PTPρ, PTPκ, and PCP-2. The authors performed the first comprehensive analysis of the subfamily in one system, examining adhesion and antibody recognition. The authors evaluated if antibodies that they developed to detect PTPmu also recognized other subfamily members. Notably, each antibody recognizes distinct subsets of type IIb RPTPs. PTPμ, PTPρ, and PTPκ have all been shown to mediate cell-cell aggregation, and prior work with PCP-2 indicated that it can mediate bead aggregation in vitro. This study reveals that PCP-2 is unique among the type IIb RPTPs in that it does not mediate cell-cell aggregation via homophilic binding. The authors conclude from these experiments that PCP-2 is likely to have a distinct biological function other than cell-cell aggregation. 相似文献
10.
TULA belongs to a two-member family: TULA (STS-2) is a lymphoid protein, whereas STS-1/TULA-2 is expressed ubiquitously. TULA proteins were implicated in the regulation of signaling mediated by protein tyrosine kinases (PTKs). The initial experiments did not fully reveal the molecular mechanism of these effects, but suggested that both TULA proteins act in a similar fashion. It was shown recently that STS-1/TULA-2 dephosphorylates PTKs. In this study, we analyzed the effects of TULA proteins on Syk, a PTK playing an important role in lymphoid signaling. First, we have shown that TULA-2 decreases tyrosine phosphorylation of Syk in vivo and in vitro and that the intact phosphatase domain of TULA-2 is essential for this effect. We have also shown that TULA-2 exhibits a certain degree of substrate specificity. Our results also indicate that inactivated TULA-2 increases tyrosine phosphorylation of Syk in cells co-transfected to overexpress these proteins, thus acting as a dominant-negative form that suppresses dephosphorylation of Syk caused by endogenous TULA-2. Furthermore, we have demonstrated that phosphatase activity of TULA is negligible as compared to that of TULA-2 and that this finding correlates with an increase in Syk tyrosine phosphorylation in cells overexpressing TULA. This result is consistent with the dominant-negative effect of inactivated TULA-2, arguing that TULA acts in this system as a negative regulator of TULA-2-dependent dephosphorylation. To summarize, our findings indicate that TULA proteins may exert opposite effects on PTK-mediated signaling and suggest that a regulatory mechanism based on this feature may exist. 相似文献
11.
To investigate the role of nonreceptor protein tyrosine phosphatase 1B (PTP1B) in β1-integrin– mediated adhesion and signaling, we transfected mouse L cells with normal and catalytically inactive forms of the phosphatase. Parental cells and cells expressing the wild-type or mutant PTP1B were assayed for (a) adhesion, (b) spreading, (c) presence of focal adhesions and stress fibers, and (d) tyrosine phosphorylation. Parental cells and cells expressing wild-type PTP1B show similar morphology, are able to attach and spread on fibronectin, and form focal adhesions and stress fibers. In contrast, cells expressing the inactive PTP1B have a spindle-shaped morphology, reduced adhesion and spreading on fibronectin, and almost a complete absence of focal adhesions and stress fibers. Attachment to fibronectin induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin in parental cells and cells transfected with the wild-type PTP1B, while in cells transfected with the mutant PTP1B, such induction is not observed. Additionally, in cells expressing the mutant PTP1B, tyrosine phosphorylation of Src is enhanced and activity is reduced. Lysophosphatidic acid temporarily reverses the effects of the mutant PTP1B, suggesting the existence of a signaling pathway triggering focal adhesion assembly that bypasses the need for active PTP1B. PTP1B coimmunoprecipitates with β1-integrin from nonionic detergent extracts and colocalizes with vinculin and the ends of actin stress fibers in focal adhesions. Our data suggest that PTP1B is a critical regulatory component of integrin signaling pathways, which is essential for adhesion, spreading, and formation of focal adhesions. 相似文献
12.
Vega C Chou S Engel K Harrell ME Rajagopal L Grundner C 《Journal of molecular biology》2011,413(1):24-31
Phosphosignaling through pSer/pThr/pTyr is emerging as a common signaling mechanism in prokaryotes. The human pathogen Staphylococcus aureus produces two low-molecular-weight protein tyrosine phosphatases (PTPs), PtpA and PtpB, with unknown functions. To provide the structural context for understanding PtpA function and substrate recognition, establish PtpA's structural relations within the PTP family, and provide a framework for the design of specific inhibitors, we solved the crystal structure of PtpA at 1 Å resolution. While PtpA adopts the common, conserved PTP fold and shows close overall similarity to eukaryotic PTPs, several features in the active site and surface organization are unique and can be explored to design selective inhibitors. A peptide bound in the active site mimics a phosphotyrosine substrate, affords insight into substrate recognition, and provides a testable substrate prediction. Genetic deletion of ptpA or ptpB does not affect in vitro growth or cell wall integrity, raising the possibility that PtpA and PtpB have specialized functions during infection. 相似文献
13.
14.
Polly J. Phillips‐Mason Harpreet Kaur Susan M. Burden‐Gulley Sonya E.L. Craig Susann M. Brady‐Kalnay 《Journal of cellular biochemistry》2011,112(1):39-48
The receptor protein tyrosine phosphatase PTPµ has a cell‐adhesion molecule‐like extracellular segment and a catalytically active intracellular segment. This structure gives PTPµ the ability to transduce signals in response to cell–cell adhesion. Full‐length PTPµ is down‐regulated in glioma cells by proteolysis which is linked to increased migration of these cells in the brain. To gain insight into the substrates PTPµ may be dephosphorylating to suppress glioma cell migration, we used a substrate trapping method to identify PTPµ substrates in tumor cell lines. We identified both PKCδ and PLCγ1 as PTPµ substrates. As PLCγ1 activation is linked to increased invasion of cancer cells, we set out to determine whether PTPµ may be upstream of PLCγ1 in regulating glioma cell migration. We conducted brain slice assays using U87‐MG human glioma cells in which PTPµ expression was reduced by shRNA to induce migration. Treatment of the same cells with PTPµ shRNA and a PLCγ1 inhibitor prevented migration of the cells within the brain slice. These data suggest that PLCγ1 is downstream of PTPµ and that dephosphorylation of PLCγ1 is likely to be a major pathway through which PTPµ suppresses glioma cell migration. J. Cell. Biochem. 112: 39–48, 2011. © 2010 Wiley‐Liss, Inc. 相似文献
15.
Xue Zhang Shuiying Yang Xinqiang Li Pei Zhu Enyu Xie 《Bioscience, biotechnology, and biochemistry》2017,81(12):2292-2300
The protein tyrosine phosphatase (PTPase) plays an important role in insect immune system. Our group has purified a type of acid phosphatase that could specifically dephosphorylate trans-Golgi p230 in vitro. In order to study this phosphatase further, we have identified and cloned the phosphatase gene from a locust specific Metarhizium anisopliae Strain CQMa102. The CQMa102 phosphatase was expressed in Pichia pastoris to verify its protease activity. The molecular weight (MW) and the isoelectric point (pI) of the phosphatase were about 85 kDa and 6.15, respectively. Substrate specificity evaluation showed that the purified enzyme exhibited high activity on O-phospho-L-tyrosine. At its optimal pH of 6.5 and optimum temperature of 70 °C, the protein showed the highest activity respectively. It can be activated by Ca2+, Mg2+, Mn2+, Ba2+, Co2+ and phosphate analogs, but inhibited by Zn2+, Cu2+, fluoride, dithiothreitol, β-mercaptoethanol and N-ethylmaleimide. 相似文献
16.
《Cell communication & adhesion》2013,20(4-6):201-205
Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap junctions. Pervanadate, an inhibitor of protein tyrosine phosphatases, mimics activated Src in inhibiting Cx43 gap junctional communication, apparently by promoting tyrosine phosphorylation of the Cx43 C-terminal tail. However, the identity of the protein tyrosine phosphatase(s) that may normally prevent Src-induced gap junction closure is unknown. Receptor-like protein tyrosine phosphatases that mediate homotypic cell-cell interaction are attractive candidates. Here we show that receptor protein tyrosine phosphatase μ (RPTPμ) interacts with Cx43 in diverse cell systems. We find that the first catalytic domain of RPTPμ binds to Cx43. Our results support a model in which RPTPμ, or a closely related protein tyrosine phosphatase, interacts with the regulatory C-terminal tail of Cx43 to prevent Src-mediated closure of Cx43 gap junctional channels. 相似文献
17.
Keilhack H Müller M Böhmer SA Frank C Weidner KM Birchmeier W Ligensa T Berndt A Kosmehl H Günther B Müller T Birchmeier C Böhmer FD 《The Journal of cell biology》2001,152(2):325-334
Male "viable motheaten" (me(v)) mice, with a naturally occurring mutation in the gene of the SH2 domain protein tyrosine phosphatase SHP-1, are sterile. Known defects in sperm maturation in these mice correlate with an impaired differentiation of the epididymis, which has similarities to the phenotype of mice with a targeted inactivation of the Ros receptor tyrosine kinase. Ros and SHP-1 are coexpressed in epididymal epithelium, and elevated phosphorylation of Ros in the epididymis of me(v) mice suggests that Ros signaling is under control of SHP-1 in vivo. Phosphorylated Ros strongly and directly associates with SHP-1 in yeast two-hybrid, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Strong binding of SHP-1 to Ros is selective compared to six other receptor tyrosine kinases. The interaction is mediated by the SHP-1 NH(2)-terminal SH2 domain and Ros phosphotyrosine 2267. Overexpression of SHP-1 results in Ros dephosphorylation and effectively downregulates Ros-dependent proliferation and transformation. We propose that SHP-1 is an important downstream regulator of Ros signaling. 相似文献
18.
Caixia Yuan Yanbo Wu Maolin Guo Shu Xing Miaoli Zhu 《Journal of inorganic biochemistry》2010,104(9):978-12934
Seven new mixed-ligand vanadyl complexes, [VIVO(5-Br-SAA)(NN)] and [VIVO(2-OH-NAA)(NN)] (1-7) (5-Br-SAA for 5-bromosalicylidene anthranilic acid, 2-OH-NAA for 2-hydroxy-1-naphthaldehyde anthranilic acid and NN for N,N′-donor heterocyclic base, namely, 2,2′-bipyridine (bpy, 1 and 5), 1,10-phenanthroline (phen, 2 and 6), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq, 3 and 7), dipyrido[3,2-a:2′,3′-c]phenazine (dppz, 4)), were synthesized and characterized. X-ray crystal structure of [VIVO(5-Br-SAA)(phen)] revealed a distorted octahedral geometry with the Schiff base ligand coordinated in a tridentate ONO-fashion and the phenanthroline ligand in a bidentate fashion. Density-functional theory (DFT) calculations suggest a similar structure and the same coordination mode for all the other oxovanadium complexes synthesized. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of protein tyrosine phosphatase 1B (PTP1B), with IC50 values approximately 41-75 nM. Kinetics assays suggest that the complexes inhibit PTP1B in a competitive manner. Notably, they had moderate selectivity of PTP1B over T-cell protein tyrosine phosphatase (TCPTP) (about 2-fold) and good selectivity over Src homology phosphatase 1 (SHP-1) (about 4∼7-fold). Thus, these mixed-ligand complexes represent a promising class of PTP1B inhibitors for future development as anti-diabetic agents. 相似文献
19.
Ben N. G. Giepmans Elles Feiken Martijn F. B. G. Gebbink Wouter H. Moolenaar 《Cell communication & adhesion》2003,10(4):201-205
Connexin-43(Cx43)-based gap junctional communication is transiently inhibited by certain G protein-coupled receptor agonists, including lysophosphatidic acid, endothelin and thrombin. Our previous studies have implicated the c-Src protein tyrosine kinase in mediating closure of Cx43 based gap junctions. Pervanadate, an inhibitor of protein tyrosine phosphatases, mimics activated Src in inhibiting Cx43 gap junctional communication, apparently by promoting tyrosine phosphorylation of the Cx43 C-terminal tail. However, the identity of the protein tyrosine phosphatase(s) that may normally prevent Src-induced gap junction closure is unknown. Receptor-like protein tyrosine phosphatases that mediate homotypic cell-cell interaction are attractive candidates. Here we show that receptor protein tyrosine phosphatase μ (RPTPμ) interacts with Cx43 in diverse cell systems. We find that the first catalytic domain of RPTPμ binds to Cx43. Our results support a model in which RPTPμ, or a closely related protein tyrosine phosphatase, interacts with the regulatory C-terminal tail of Cx43 to prevent Src-mediated closure of Cx43 gap junctional channels. 相似文献